您当前所在位置:首页 > 考研 > 考研辅导 > 数学

2011考研数学概率统计考点总结

编辑:

2010-10-14

七、 参数估计

参数估计是统计中的基本方法,尤其是点估计,是比较常用,简单,也是历年考试的重点,基本上每年的考试都会涉及到点估计。

掌握矩估计法(一阶矩、二阶矩)和最大似然估计法。这两个估计法思路清晰,求法固定,而且基本作为解答题出现,因此可以说是考试的得分题目;

估计量的估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,其中估计量的无偏性是历年的考试重点。(常考点:样本方差是总体的方差的无偏估计);

理解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间(本节需要熟练掌握上一章的3个定理)。

八、 假设检验

假设检验是在总体的分布函数完全未知或只知其形式,但不知其参数的情况下,提出对总体的假设,是统计方法的另一类思路。

基本上,我们需要了解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误;

掌握单个及两个正态总体的均值和方差的假设检验。

2010年概率统计考点分布

得分率

选择题(2题)

分布函数的定义

 

 

 

均匀分布、正态分布的密度函数

连续随机变量的概率密度函数归一性  

 

 

填空题(1题)

离散随机变量的二阶矩的计算

离散随机变量的概率密度函数归一性  

泊松分布的数字特征  

 

解答题(2题)

二维随机变量的概率密度函数归一性

二维随机变量的条件密度函数  

 

 

无偏估计定义

离散随机变量的期望计算

二项分布的应用

 

2009年概率统计考点分布

得分率

选择题(2题)

正态分布定义

数学期望

 

 

分布函数的定义

基本公

 

 

填空题 (1 题)

二项分布的定义及其数字特征

样本均值 , 样本方差 样本方差是总体样本的无偏估计量

无偏估计,数字特征的函数运算

 

解答题 ( 2 题)

条件概率

古典概型

离散随机变量的联合分布律

 

矩估计量

最大似然估计量

 

 

2008 年概率统计考点分析

得分率

选择题 ( 2 题)

随机变量函数的分布

分布独立性的应用

 

29%

相关系数的性质;定理有 的充要条件是 P{Y=A+BX}=1.

正态分布的标准化

 

62.3%

填空题 ( 1 题)

方差定义 ( 与二阶矩的不同 )

泊松分布的分布函数 , 数字 特征

 

36.6%

解答题 ( 2 题)

条件概率

二维随机变量的函数的分布

 

 

  样本均值 , 样本方差性质及其分布

无偏估计量

尤其是正态分布 , 卡方分布的数字特征

35.3%

2007 年概率统计考点分析

得分率

选择题 ( 2 题)

二项分布

独立性

乘法公式

64.4%

不相关与独立的区别正态分布下的个概念的等价

条件概率密度

 

66.6% 

填空题 ( 1 题)

二维均匀分布的概率的求法

双重积分的计算

 

41.4%

解答题 ( 2 题)

二维随机变量的概率

二维随机变量函数的分布

 

32.8%

矩估计

无偏估计量

随机变量的数字特征

35%

 

标签:数学

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。