编辑:
2011-12-14
第四章 随机变量的数字特征
本章内容是:随机变量的数字特征:数学期望、方差、标准差、矩、协方差、相关系数,常见分布的数字特征。而重点是利用数字特征的基本性质计算具体分布的数字特征,根据一维和二维随机变量的概率分布求其函数的数学期望。
第五章 大数定律和中心极限定理
本章内容包括三个大数定律:切比雪夫定律、伯努利大数定律、辛钦大数定律,以及两个中心极限定理:棣莫弗——拉普拉斯定理、列维——林德伯格定理。
本章的内容不是重点,也不经常考,只要把这些定律、定理的条件与结论记住就可以了。
常见题型有
1.估计概率的值
2.与中心极限定理相关的命题
第六章 数理统计的基本概念
数理统计的基本概念主要是总体、简单随机样本、统计量、样本均值、样本方差及样本矩。重点是正态总体的抽样分布,包括样本均值、样本方差、样本矩、两个样本的均值差、两个样本方差比的抽样分布。这会涉及标准正态分布、分布、 分布和 分布,要掌握这些分布对应随机变量的典型模式及它们参数的确定,这些分布的分位数和相应的数值表。
本章是数理统计的基础,也是重点之一。
1.样本容量的计算
2.分位数的求解或判定
4.总体或统计量的分布函数的求解或判定或证明
5.求总体或统计量的数字特征
第七章 参数估计
本章的主要内容是参数的点估计、估计量与估计值的概念、一阶或二阶矩估计和最大似然估计法、未知参数的置信区间、单个正态总体均值和方差的置信区间、两个总体的均值差和方差比的置信区间。而重点是矩估计法和最大似然估计法,有时要求验证所得估计量的无偏性。
常见题型有
1.统计量的无偏性、一致性或有效性
2.参数的矩估计量或矩估计值或估计量的数字特征
3.参数的最大似然估量或估计量或估计量的数字特征
4.求单个正态总体均值的置信区间
标签:数学
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。