编辑:
2013-11-06
6、多元函数积分学
①理解二重积分与三重积分的概念,了解重积分的性质。②掌握二重积分(直角坐标、极坐标)的计算方法,会计算三重积分(直角坐标、柱面坐标、球面坐标)。③理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系;掌握计算两类曲线积分的方法;掌握格林公式并会运用平面曲线积分与路径无关的条件。④了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法。⑤会用重积分、曲线积分和曲面积分求一些几何量和物理量。重点是利用直角坐标、极坐标计算二重积分。利用直角坐标、柱面坐标、球面坐标计算三重积分。两类曲线积分的概念、性质及计算,格林公式。两类曲面积分的概念、性质及计算,高斯公式。难点是化二重积分为二次积分、改换二次积分的积分次序以及三重积分计算。第二类曲面积分与斯托克斯公式。
7、无穷级数
①掌握级数的基本性质及其级数收敛的必要条件,掌握几何级数与p级数的收敛性;掌握比值审敛法,会用正项级数的比较与根值审敛法。②会用交错级数的莱布尼兹定理,了解绝对收敛和条件收敛的概念及它们的关系。③会求幂级数的和函数以及数项级数的和,掌握幂级数收敛域的求法④掌握ex、sinx、cosx、ln(1+x),(1+x)α的马克劳林展开式,会用它们将简单函数作间接展开;会将定义在[-L,L]上的函数展开为傅立叶级数,会将定义在上的函数展开为正弦级数和余弦函数。重点是数项级数的概念与性质,正项级数的审敛法,交错级数及其审敛法,绝对收敛与条件收敛的概念。幂级数的收敛半径、收敛区间的求法,将函数展成傅立叶级数。难点是求幂级数的和函数,将函数展成幂级数、傅立叶级数。
8、常微分方程
①了解微分方程及其解、阶、通解、初始条件和特解等概念;掌握变量可分离方程及一阶线性方程的解法。②会用降阶法解y(n)=f(x),y″=f(x,y),y″=f(y,y’)类的方程;理解线性微分方程解的性质和解的结构。③掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程。④会解包含两个未知函数的一阶常系数线性微分方程组。重点是微分方程的概念,变量可分离方程,一阶线性微分方程及二阶的常系数线性微分方程的解法。难点是由实际问题建立微分方程及确定定解条件。
2014考研高数备考技巧:八大重难点分析就为考生介绍到这了,希望可以帮到广大考生!
相关推荐:2014考研数学指导:高数复习
标签:数学
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。