编辑:
2014-11-18
三、特征值与特征向量
相对于前两章来说,本章不是线性代数这门课的理论重点,但却是一个考试重点。其原因是解决相关题目要用到线代中的大量内容——既有行列式、矩阵又有线性方程组和线性相关,“牵一发而动全身”。本章知识要点如下:
1.特征值和特征向量的定义及计算方法就是记牢一系列公式和性质。
2.相似矩阵及其性质,需要区分矩阵的相似、等价与合同:
3.矩阵可相似对角化的条件,包括两个充要条件和两个充分条件。充要条件1是n阶矩阵有n个线性无关的特征值;充要条件2是任意r重特征根对应有r个线性无关的特征向量。
4.实对称矩阵及其相似对角化,n阶实对称矩阵必可正交相似于对角阵。
四、二次型
本章所讲的内容从根本上讲是第五章《特征值和特征向量》的一个延伸,因为化二次型为标准型的核心知识为“对于实对称矩阵A存在正交矩阵C使得A可以相似对角化”,其过程就是上一章相似对角化在为实对称矩阵时的应用。
本章知识要点如下:
1.二次型及其矩阵表示。
2.用正交变换化二次型为标准型。
3.正负定二次型的判断与证明。
高效的复习有助于考研成绩的提高,以上就是精品学习网为大家准备的考研数学线性代数考点,希望对大家有用。
相关推荐
标签:数学
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。