编辑:
2014-09-11
小结:我们只要明确所求函数解析式的类型,便可设出其函数解析式,设法求出其系数即可得到结果。类似的已知f(x)为一次函数时,可设f(x)=ax+b(a≠0);f(x)为反比例函数时,可设f(x)=■(k≠0);f(x)为二次函数时,根据条件可设
①一般式:f(x)=ax2+bx+c(a≠0)
②顶点式:f(x)=a(x-h)2+k(a≠0)
③双根式:f(x)=a(x-x1)(x-x2)(a≠0)
[题型四]消元法
例4.已知函数y=f(x)满足af(x)+bf(■)=cx,其中a、b、c都是非零常数,a≠±b,求函数y=f(x)的解析式。
分析:求函数y=f(x)的解析式,由已知条件知必须消去f(■),不难想到再寻找一个方程,构成方程组,消去f(■)得f(x)。如何构成呢?充分利用x和■的倒数关系,用■去替换已知中的x便可得到另一个方程。
解:在已知等式中,将x换成■,得af(■)+bf(x)=■,把它与原条件式联立,得af(x)+bf(■)=cx……①af(■)+bf(x)=■……②
①×a-②×b得(a2-b2)f(x)=c(ax-■)
∵a≠±b ∴f(x)=■(ax-■)(x≠0)
(周六继续刊登)
有同学通过QQ询问下面的数学题,我们请天津四中的孟黎辉老师来回答。
问1.已知:方程:x2+ax+a+1=0的两根满足一个条件:一根大于k,一根小于k(k是实数),求a的取值范围。(此题一种方法是图象法,还有一种方法,能告诉这两种方法吗?)
答:方法一:∵f(x)=x2+ax+a+1图象为开口向上的抛物线,因此只需f(k)<0即可。
∴k2+ak+a+1<0,即a(k+1)<-k2-1
∴当k>-1时,a<■;当k<-1时,a>■;当k=-1时,a无解。
方法二:(x1-k)(x2-k)<0△>0
只需(x1-k)(x2-k)<0即可,x1x2-k(x1+x2)+k2<0
即a+1+ka+k2<0,以下同方法一。
问2.为什么求解时只需求(x1-k)(x2-k)<0,而不需再求根的判别式是否大于0?
答:法二不需要验判别式,原因可以举个简单例子说明,如:若研究x2+ax+b=0两根满足:一个根大于0,一个根小于0,只需x1x2<0,即:b<0,此时就可以保证△=a2-4b>0恒成立。
现在是不是觉得奥数很简单啊,希望这篇初中奥数函数知识点:求函数解析式的几种常用方法可以帮助到你。
标签:函数
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。