编辑:
2015-03-26
归纳总结:用十字相乘法把二次项系数是“1”的二次三项式分解因式时,
(1).当常数项是正数时,常数项分解的两个因数的符号是( ),且这两个因数的符号 与一次项的系数的符号( )。
(2).当常数项是负数时, 常数项分解的两个因数的符号是( ),其中( )的因数符号与一次项系数的符号相同。
(3)对于常数项分解的两个因数,还要看看它们的( )是否等于一次项的( )。
探究二:用十字相乘法分解因式
(1)a2+7a+10 (2) y2-7y+12
(3) x2+x-20 (4) x2-3xy+2y2
探究三:因式分解:
(1) 2x2-7x+3 (2) 2x2+5xy+3y2
模块三 形成提升
1.因式分解成(x-1)(x+2)的多项式是( )
A.x2-x-2 B. x2+x+2 C. x2+x-2 D. x2-x+2
2.若多项式x2-7x+6=(x+a)(x+b)则a=_____,b=_____。
3. (1)x2+4x+_____=(x+3)(x+1); (2)x2+____x-3=(x-3)(x+1);
4.因式分解:
(1) m2+7m-18 (2)x2-9x+18 (3)3y2+7y -6 (4)x2-7x+10
(5)x2+2x-15 (6)12x2-13x+3 (7)18x2-21xy+5y2
模块四 小结反思
一.这一节课我们一起学习了哪些知识和思想方法?
二.本课典型:十字相乘法进行二次三项式的因式分解。
三.我的困惑:请写出来:
课外拓展思维训练:
1.若(x2+y2)(x2+y2-1)=12, 则x2+y2=___________.
2.已知:,那么的值为_____________.
3.若是的因式,则p为( )
A、-15 B、-2 C、8 D、2
4.多项式的公因式是___________.
这篇2015年初二年级第二学期数学教案就为大家分享到这里了。希望对大家有所帮助!
相关推荐
标签:初二数学教案
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。