编辑:
2016-10-04
=×OD×(BC+AC+AB)
=×3×21=31.5.
18. 15 解析:因为CD平分∠ACB,∠A=90°,DE⊥BC,
所以∠ACD=∠ECD,CD=CD,∠DAC=∠DEC,所以△ADC≌△EDC,
所以AD=DE, AC=EC,所以△DEB的周长=BD+DE+BE=BD+AD+BE.
又因为AB=AC,所以△DEB的周长=AB+BE=AC+BE=EC+BE=BC=15 cm.
19. 分析:∠ADB与∠FCE分别是△ADB与△FCE的两个内角,若能证明这两个三角形全等,则可证明∠ADB=∠FCE.这两个三角形中已具备一边(AB=FE)和一角(∠B=∠E)的条件,若能证明BD=EC,利用“SAS”即可证明这两个三角形全等,所需条件根据线段的和差关系容易得出.
证明:∵ BC=DE,
∴ BC+CD=DE+CD,即BD=CE.
在△ABD与△FEC中,
∴ △ABD≌△FEC(SAS).
∴ .
20. 分析:由△ABC≌△ADE,可得∠DAE=∠BAC=(∠EAB-∠CAD),根据三角形外角的性质可得∠DFB=∠FAB+∠B.因为∠FAB=∠FAC+∠CAB,即可求得∠DFB的度数;根据三角形外角的性质可得∠DGB=∠DFB -∠D,即可得∠DGB的度数.
解:∵ △ABC≌△ADE,
∴ ∠DAE=∠BAC=(∠EAB-∠CAD)=.
∴ ∠DFB=∠FAB+∠B=∠FAC+∠CAB+∠B=10°+55°+25°=90°,
∠DGB=∠DFB-∠D=90°-25°=65°.
21. 分析:首先根据角之间的关系推出 再根据边角边定理,证明△ ≌
△ ,最后根据全等三角形的性质定理,得知 .根据角的转换可求出.
证明:(1)因为 ,
所以 .
又因为
在△ 与△ 中,
所以△ ≌△ . 所以 .
(2)因为
△ ≌△ ,
所以
,
即
22. 分析:(1)根据角平分线的性质“角平分线上的点到角两边的距离相等”可得点D到AB的距离=点D到AC的距离,即CD=DE.再根据Rt△CDF≌Rt△EDB,得CF=EB.
(2)利用角平分线的性质证明△ADC≌△ADE,∴ AC=AE,再将线段AB进行转化.
证明:(1)∵ AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴ DE=DC.
又∵ BD=DF,∴ Rt△CDF≌Rt△EDB(HL),
∴ CF=EB.(2)∵ AD是∠BAC的平分线,DE⊥AB,DC⊥AC,
∴ △ADC≌△ADE,∴ AC=AE,
∴ AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.
23. 证明:∵ DB⊥AC ,CE⊥AB,∴ ∠AEC=∠ADB=90°.
在△ACE与△ABD中,
∴ △ACE≌△ABD (AAS),∴ AD=AE.
在Rt△AEF与Rt△ADF中,
∴ Rt△AEF≌Rt△ADF(HL),
∴ ∠EAF=∠DAF,∴ AF平分∠BAC.
24.⑴证明:因为BF⊥CE于点F,
所以∠CFB=90°,
标签:数学试卷
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。