您当前所在位置:首页 > 初中 > 初三 > 数学 > 初三数学教案

函数的单调性与极值教案

编辑:haiyangcms

2013-07-28

目的要求

1.理解并掌握函数最大值与最小值的意义及其求法.

2.弄清函数极值与最值的区别与联系.

3.养成“整体思维”的习惯,提高应用知识解决实际问题的能力.

内容分析

1.教科书结合函数图象,直观地指出函数最大值、最小值的概念,从中得出利用导数求函数最大值和最小值的方法.

2.要着重引导学生弄清函数最值与极值的区别与联系.函数最大值和最小值是比较整个定义域上的函数值得出的,而函数的极值则是比较极值点附近两侧的函数值而得出的,是局部的.

3.我们所讨论的函数y=f(x)在[a,b]上有定义,在开区间(a,b)内有导数.在文科的数学教学中回避了函数连续的概念.规定y=f(x)在[a,b]上有定义,是为了保证函数在[a,b]内有最大值和最小值;在(a,b)内可导,是为了能用求导的方法求解.

4.求函数最大值和最小值,先确定函数的极大值和极小值,然后,再比较函数在区间两端的函数值,因此,用导数判断函数极大值与极小值是解决函数最值问题的关键.

5.有关函数最值的实际应用问题的教学,是本节内容的难点.教学时,必须引导学生确定正确的数学建模思想,分析实际问题中各变量之间的关系,给出自变量与因变量的函数关系式,同时确定函数自变量的实际意义,找出取值范围,确保解题的正确性.从此,在函数最值的求法中多了一种非常优美而简捷的方法——求导法.依教学大纲规定,有关此类函数最值的实际应用问题一般指单峰函数,而文科所涉及的函数必须是在所学导数公式之内能求导的函数.

教学过程

1.复习函数极值的一般求法

①学生复述求函数极值的三个步骤.

②教师强调理解求函数极值时应注意的几个问题.

2.提出问题(用字幕打出)

①在教科书中的(图2-11)中,哪些点是极大值点?哪些点是极小值点?

②x=a、x=b是不是极值点?

③在区间[a,b]上函数y=f(x)的最大值是什么?最小值是什么?

④一般地,设y=f(x)是定义在[a,b]上的函数,且在(a,b)内有导数.求函数y=f(x)在[a,b]上的最大值与最小值,你认为应通过什么方法去求解?

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。