编辑:
2017-10-13
误区提醒
(1)误认为梯形只有等腰梯形与直角梯形两种,而实质上这两种只是梯形的一个特殊情况;(2)对等腰梯形判定定理把握不准,忽视了“同一底”这一前提条件。
【典型例题】(2010年安徽省模拟)如图,在梯形ABCD中AD//BC,BD=CD,且∠ABC为锐角,若AD=4 ,BC=12,E为BC上的一点,当CE分别为何值时,四边形ABED是等腰梯形?直角梯形?写出你的结论,并加以证明。
解:当CE=4时,四边形ABCD是等腰梯形
在BC上截取CE=AD,连接DE、AE.
又∵AD//BC, ∴四边形AECD是平行四边形
∴AE=CD=BD
∵BE=12-4=8>4, 即BE>AD
∴AB不平行于DE∴四边形ABED是梯形
∵AE//CD,CD=BD, ∴∠AEB=∠C=∠DBE[来源:学科网]
在△ABE和△DEB中
AE=DB, ∠AEB=∠DBE,BE=EB
△ABE≌△DEB(SAS) , ∴AB=DE
∴四边形ABED是等腰梯形
当CE=6,四边形ABED是直角梯形
在BC上取一点E,使得EC=BE=BC=6,连接DE,
∵BD=CD,∴DE⊥BC
又∵BE≠AD,AD//BE, ∴AB不平行于DE
∴四边形ABDE是直角梯形。
梯形知识点就到这儿了,体会每篇文章的不同,摘取自己想要的,友情提醒,理解最重要哦!!!
标签:数学知识点
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。