编辑:
2016-09-26
等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).
[师]下面我们通过几个例题来初步学习等腰三角形判定定理的简单运用. (演示课件)
[例2]求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.
[师]这个题是文字叙述的证明题,?我们首先得将文字语言转化成相应的数学语言,再根据题意画出相应的几何图形.
已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC(如图). 求证:AB=AC.
E
A
1
2
D
[师]同学们先思考,再分析.
[生]要证明AB=AC,可先证明∠B=∠C.
[师]这位同学首先想到我们这节课的重点内容,很好! [生]接下来,可以找∠B、∠C与∠1、∠2的关系. [师]我们共同证明,注意每一步证明的理论根据. (演示课件,括号内部分由学生来填) 证明:∵AD∥BC,
∴∠1=∠B(两直线平行,同位角相等), ∠2=∠C(两直线平行,内错角相等). 又∵∠1=∠2, ∴∠B=∠C,
∴AB=AC(等角对等边).
[师]看大屏幕,同学们试着完成这个题. (课件演示)
A
D
已知:如图,AD∥BC,BD平分∠ABC. 求证:AB=AD.
(投影仪演示学生证明过程) B
证明:∵AD∥BC,
∴∠ADB=∠DBC(两直线平行,内错角相等). 又∵BD平分∠ABC, ∴∠ABD=∠DBC, ∴∠ABD=∠ADB, ∴AB=AD(等角对等边). [师]下面来看另一个例题. (演示课件)
C
[例3]如图(1),标杆AB的高为5米,为了将它固定,需要由它的中点C?向地面上与点B距离相等的D、E两点拉两条绳子,使得D、B、E在一条直线上,量得DE=4米,?绳子CD和CE要多长?
A
B
(1)
E
(2)
相关的问题,解决这类型问题,需要将实
[师]这是一个与实际生活
标签:数学教案
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。