您当前所在位置:首页 > 初中 > 教案 > 初三教案 > 数学教案

初中三年级数学教案:全等三角形教学设计

编辑:

2014-08-31

生丁:△PBD≌△CBA(ASA)

师:板演,由AB⊥ED,可得到∠BPD=900,∠BPD=∠CBA,∠A=∠D,PB=BC,故有△PBD≌△CBA(ASA)。

师:还有其他三角形全等吗?

生:有,我连接BN,由勾股定理得PN=CN,就不难得到△APN≌△DCN。

(在错综复杂的图形中寻找全等三角形是一件不容易的事,要鼓励学生大胆的猜想,努力探求,在学生的叙述过程中,教师及时纠正学生叙述中的错误,训练学生严谨的学习态度和学习习惯。)

例2、(动手画)(1)已知OP为∠AOB平分线,请你利用该图画一对以OP所在直线为对称轴的全等三角形。

教师在黑板上画好∠AOB和直线OP,学生独立思考,然后请几个学生在黑板上演示。

师生总结:想要画出符合条件的三角形,只要在射线OA、OB上找到一对关于OP对称的点就可以了。

(2)利用上图作全等三角形方法,在△ABC中,∠B=600,∠ABC是直角,AD、CE是∠BAC,∠DCA的平分线,AD、CE相交于F,请判断FE与FD间数量关系。

师:请同学们用三角尺和量角器准确画出此图,然后量出EF、FD的长度,看看EF与FD长度

关系如何?

生:基本相等。

生:长度相等。

师:如何来证明他们相等?注意审题。

学生先独立思考后,组内交流,等到有同学举手发言。

生:在AC上取点H,使AH=AE,则△AEF≌△AHF则EF=FH

师:为什么要这么做?你是怎么想到的?

生:因为要证明线段相等要考虑三角形全等,而EF、FD所在两个三角形显然不全等,又AD是平分线,在AC上找出E关于AD有对称点H得到△AEF≌△AHF。

师:这样只能得到EF=FH。

生:再证明△FHC≌△FDC。

生:先求出AD、CE是角平分线∠APC=1200,则∠DPC=∠EPA=∠APH=600,所以∠HPC=

∠DPC=600,PC=PC,∠3=∠4,因为△HCP≌△DCP(ASA)所以PD=PH。

(看清题意,猜想结果是解决探究题的重要环节,教师要留给学生一定思考时间,同时鼓励学生尝试和交流,鼓励学生勇于探索以及同学之间的合作。)

师生共同小结:

1、熟记全等三角形的基本形态,会找全等三角形的对应边和对应角。

2、在错综复杂的几何图形中能够寻找全等三角形。

3、利用角平分线的对称性构造三角形全等,并利用三角形的全等性质解决线段之间的等量关系。

4、运用全等三角形的识别法可以解决很多生活实际问题。

作业:

1、在例2中,如果∠ACB不是直角,而(1)中的其他条件不变,请问:你在(1)中所得结论能成立吗?若成立,请证明,若不成立,请说明理由。

2、书本课后复习题

教学反思:

本教学设计从以下三方面考虑:

1、根据学生的学习情况,改进学生的学习方式,强调合作交流,探索学习,教师在教学过程中,努力为学生创设自主探索的氛围,让学生真正成为课堂主体。

2、重视对学生能力的培养,除常规的鼓励就大胆思考,积极发言,重视培养学生观察、操作、测试、思考的能力,学生的活跃,他们思考问题的方式是多种多样,教师从对完全更改,尊重他们的学习方式,这样有助于创新

3、重视对学生学习习惯的培养,全等三角形是几何部分内容说明书,有较强逻辑性,教师板演,以及在学生叙述中纠正学生的错误,是培养学生养成良好的习惯之一,同时学生学习习惯多方面的,在合作交流中,培养学生合作意识和合作习惯培养显得尤为重要。

有关初中三年级数学教案:全等三角形教学设计的内容就和大家分享到这里了,希望可以帮助到大家!

标签:数学教案

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。