您当前所在位置:首页 > 初中 > 教案 > 初三教案 > 数学教案

九年级下册数学第6章教案:第2节(第1课时)

编辑:sx_zhanglz

2016-03-14

 教案在今天推行素质教育、实施新课程改革中重要性日益突出,在教师的教学活动中起着非常关键的作用。下面是九年级下册数学第6章教案,欢迎各位老师和学生参考!

教学目标

【知识与技能】

使学生会用描点法画出函数y=ax2的图象,理解并掌握抛物线的有关概念及其性质.

【过程与方法】

使学生经历探索二次函数y=ax2的图象及性质的过程,获得利用图象研究函数性质的经验,培养学生分析、解决问题的能力.

【情感、态度与价值观】

使学生经历探索二次函数y=ax2的图象和性质的过程,培养学生观察、思考、归纳的良好思维品质.

重点难点

【重点】

使学生理解抛物线的有关概念及性质,会用描点法画出二次函数y=ax2的图象.

【难点】

用描点法画出二次函数y=ax2的图象以及探索二次函数的性质.

教学过程

一、问题引入

1.一次函数的图象是什么?反比例函数的图象是什么?

(一次函数的图象是一条直线,反比例函数的图象是双曲线.)

2.画函数图象的一般步骤是什么?

一般步骤:(1)列表(取几组x,y的对应值);(2)描点(根据表中x,y的数值在坐标平面中描点(x,y));(3)连线(用平滑曲线).

3.二次函数的图象是什么形状?二次函数有哪些性质?

(运用描点法作二次函数的图象,然后观察、分析并归纳得到二次函数的性质.)

二、新课教授

【例1】 画出二次函数y=x2的图象.

解:(1)列表中自变量x可以是任意实数,列表表示几组对应值.

(2)描点:根据上表中x,y的数值在平面直角坐标系中描点(x,y).

(3)连线:用平滑的曲线顺次连接各点,得到函数y=x2的图象,如图所示.

思考:观察二次函数y=x2的图象,思考下列问题:

(1)二次函数y=x2的图象是什么形状?

(2)图象是轴对称图形吗?如果是,它的对称轴是什么?

(3)图象有最低点吗?如果有,最低点的坐标是什么?

师生活动:

教师引导学生在平面直角坐标系中画出二次函数y=x2的图象,通过数形结合解决上面的3个问题.

学生动手画图,观察、讨论并归纳,积极展示探究结果,教师评价.

函数y=x2的图象是一条关于y轴(x=0)对称的曲线,这条曲线叫做抛物线.实际上二次函数的图象都是抛物线.二次函数y=x2的图象可以简称为抛物线y=x2.

由图象可以看出,抛物线y=x2开口向上;y轴是抛物线y=x2的对称轴:抛物线y=x2与它的对称轴的交点(0,0)叫做抛物线的顶点,它是抛物线y=x2的最低点.实际上每条抛物线都有对称轴,抛物线与对称轴的交点叫做抛物线的顶点,顶点是抛物线的最低点或最高点.

【例2】 在同一直角坐标系中,画出函数y=x2及y=2x2的图象.

解:分别填表,再画出它们的图象.

思考:函数y=x2、y=2x2的图象与函数y=x2的图象有什么共同点和不同点?

师生活动:

教师引导学生在平面直角坐标系中画出二次函数y=x2、y=2x2的图象.

学生动手画图,观察、讨论并归纳,回答探究的思路和结果,教师评价.

抛物线y=x2、y=2x2与抛物线y=x2的开口均向上,顶点坐标都是(0,0),函数y=2x2的图象的开口较窄,y=x2的图象的开口较大.

探究1:画出函数y=-x2、y=-x2、y=-2x2的图象,并考虑这些图象有什么共同点和不同点。

师生活动:

标签:数学教案

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。