编辑:
2016-08-28
根据题意,得:
212(8-x)(6-x)=12××8×6 21 整理,得:x-14x+24=0
(x-7)2=25即x1=12,x2=2
x1=12,x2=2都是原方程的根,但x1=12不合题意,舍去.
所以2秒后△PCQ的面积为Rt△ACB面积的一半.
五、归纳小结
本节课应掌握:
左边不含有x的完全平方形式,?左边是非负数的一元二次方程化为左边是含有x的完全平方形式,右边是非负数,可以直接降次解方程的方程.
六、布置作业
1.教材 复习巩固2.
2.选用作业设计.
一、选择题
1.将二次三项式x-4x+1配方后得( ).
A.(x-2)2+3 B.(x-2)2-3 C.(x+2)2+3 D.(x+2)2-3
2.已知x2-8x+15=0,左边化成含有x的完全平方形式,其中正确的是( ).
A.x2-8x+(-4)2=31 B.x2-8x+(-4)2=1
C.x2+8x+42=1 D.x2-4x+4=-11
3.如果mx2+2(3-2m)x+3m-2=0(m≠0)的左边是一个关于x的完全平方式,则m等于( ).
A.1 B.-1 C.1或9 D.-1或9
二、填空题
1.方程x+4x-5=0的解是________.
2.代数式x?x?2
x?12222的值为0,则x的值为________.
3.已知(x+y)(x+y+2)-8=0,求x+y的值,若设x+y=z,则原方程可变为_______,
?所以求出z的值即为x+y的值,所以x+y的值为______.
三、综合提高题
1.已知三角形两边长分别为2和4,第三边是方程x2-4x+3=0的解,求这个三角形的周长.
2.如果x-4x+y,求(xy)的值.
3.新华商场销售某种冰箱,每台进货价为2500?元,?市场调研表明:?当销售价为2900元时,平均每天能售出8台;而当销售价每降50元时,平均每天就能多售出4台,商场要想使这种冰箱的销售利润平均每天达5000元,每台冰箱的定价应为多少元?
答案:
一、1.B 2.B 3.C
二、1.x1=1,x2=-5 2.2 3.z2+2z-8=0,2,-4
三、1.(x-3)(x-1)=0,x1=3,x2=1,
∴三角形周长为9(∵x2=1,∴不能构成三角形)
22
2.(x-2)+(y+3), 22
z
∴x=2,y=-3,z=-2,(xy)z=(-6)-2=
3.设每台定价为x,则:(x-2500)(8+
x2-5500x+7506250=0,解得x=2750
1362900?x50 ×4)=5000,
看完精品学习网初中频道推荐的九年级数学降次——解一元二次方程教案设计,相信老师对教学设计、规划也有了更清楚的掌握,更多参考资料尽在精品学习网。
相关推荐:
标签:数学教案
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。