编辑:
2016-08-05
【学生活动】
思考:
1.(-4)3的底数是什么?指数是什么?幂是多少?
2.23和32的意义相同吗?
3.(-2)3、-23、-(-2)3分别表示什么意义?
4.(-32)4、-324分别表示什么意义?
【设计意图】
理解乘方、指数、底数、幂的概念,理解乘方运算和乘法运算的关系.
引导学生体会数学所蕴含的理性、简洁和符号化之美。
三、例题讲解
例1 计算:
(1)①37;②73;③(-3)4;④(-4)3.
(2)①(21)5;②(53)3;③(-32)4.
解答:
(1)①2187;②343;③81;④-64.
(2)①321;②12527;③8116.
【设计意图】
让学生进一步理解乘方运算和乘法运算之间的关系.学会运用乘法运算求简单的幂的结果。
例2 计算并思考幂的符号如何确定:
(1)52、0.23、(32)4;
(2)(-4)3、(-32)5、(-1)7;
(3)(-1)4、(-3)2、(-21)6.
解答:
(1)52=25、0.23=0.008、(32)4=8116;
(2)(-4)3=-64、(-32)5=-24332、(-1)7=-1;
(3)(-1)4=1、(-3)2=9、(-21)6=641.
【学生活动】
思考,概括出有理数的幂的符号法则:
正数的任何次幂都是正数;
负数的奇数次幂是负数,负数的偶数次幂是正数.
【设计意图】
学生通过计算、观察、归纳很快可以总结出有理数乘方的符号法则.在此基础上,引导学生归纳,有理数乘方运算一般先确定符号,再确定绝对值.对于提高运算正确率有较大帮助.
四、课堂练习.
1.计算.
(1)(-5)3; (2)(-21)5; (3)(-31)4;
(4)-53; (5)0.14; (6)18.
2.如果你第1个月存2元.从第2个月起每个月的存款都是上个月的2倍.那么第6个月要存多少钱?第12个月呢?
3.观察下列各式,然后填空:
10=101;
100=10×10=102;
1 000=10×10×10=103;
10 000=10×10×10×10=104;
= =105;
= =106;
= =107;
= =108.
【学生活动】
独立完成,课堂交流.
【设计意图】
巩固当堂课所学知识.
五、课堂小结:
谈谈你这一节课有哪些收获.
【设计意图】
归纳知识体系,提炼思想和方法.
六、作业
课本第54页第1题
二稿
看完精品学习网给大家带来的初一上册数学教案范文,相信老师对教学计划有了更深的认识。更多参考资料尽在精品学习网初中频道。
相关推荐:
标签:数学教案
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。