您当前所在位置:首页 > 初中 > 教案 > 初中综合教案

初三数学开学教育教案新学期

编辑:

2015-03-05

(2)移项,得(x-2)2-2x+4=0

(x-2)2-2(x-2)=0

因式分解,得:(x-2)(x-2-2)=0

整理,得:(x-2)(x-4)=0

于是,得x-2=0或x-4=0

x1=2,x2=4

例2.已知9a2-4b2=0,求代数式 的值.

分析:要求 的值,首先要对它进行化简,然后从已知条件入手,求出a与b的关系后代入,但也可以直接代入,因计算量比较大,比较容易发生错误.

解:原式=

∵9a2-4b2=0

∴(3a+2b)(3a-2b)=0

3a+2b=0或3a-2b=0,

a=- b或a= b

当a=- b时,原式=- =3

当a= b时,原式=-3.

三、应用拓展

例3.我们知道x2-(a+b)x+ab=(x-a)(x-b),那么x2-(a+b)x+ab=0就可转化为(x-a)(x-b)=0,请你用上面的方法解下列方程.

(1)x2-3x-4=0    (2)x2-7x+6=0   (3)x2+4x-5=0

分析:二次三项式x2-(a+b)x+ab的最大特点是x2项是由x·x而成,常数项ab是由-a·(-b)而成的,而一次项是由-a·x+(-b·x)交*相乘而成的.根据上面的分析,我们可以对上面的三题分解因式.

解(1)∵x2-3x-4=(x-4)(x+1)

∴(x-4)(x+1)=0

∴x-4=0或x+1=0

∴x1=4,x2=-1

(2)∵x2-7x+6=(x-6)(x-1)

∴(x-6)(x-1)=0

∴x-6=0或x-1=0

∴x1=6,x2=1

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。