湘教版初二数学实数教学计划范文:上册

编辑:

2016-08-30

3、无理数和实数的概念。引入无理数使数域扩充到实数域,初中的所有数的运算均在实数范围内进行的。无理数概念的理解决定实数概念的理解,有利于实数分类和运算的掌握。要让学生掌握关于有理数的运算律和运算性质再实数范围内仍成立,这是中学数学的基础。

教学难点:

1、平方根与算术平方根的区别于联系。首先这两个概念容易混淆,而且各自的符号表示意义学生不是很容易区分,教学中要抓住算术平方根式平方根中正的那个,讲清各自符号的意义,区分两种表示的不同。对于平方根运算不仅数有限制,而且结果有两个,这是与以前学过的数的运算很大的区别,要让学生真正理解有一定的困难。

2、立方根的唯一性及负数立方根的意义。由于平方根的学习,学生容易错误的得出立方根与平方根的结论相似,因此要对比讲解两者的区别:对于任何一个数都有唯一的立方根,而且学生难于理解负数立方根的意义,应注意从立方与开立方互为逆运算的角度分析。

3、无理数和实数的理解。无理数和实数比较抽象,尤其是无理数不能像实数那样具体描述出某个数的特点,在学生思维中想象不出它的存在,借助实数和数轴上的点一一对应,注意通过具体数加以解释。实数抽象程度较高,学生对实数意义有所了解就可以。

四、单元教学思路及策略:

(一)加强与实际的联系

本章内容与实际的联系是非常密切的。例如,无理数是从现实世界中抽象出来的一种数,开平方运算和开立方运算也是实际中经常用到的两种运算,用有理数估计无理数的大小在现实生活中经常遇到等等。因此,本章内容在编写时注意联系实际,对于一些重要的概念和运算紧密结合实际生活展开,例如算术平方根是从已知正方形的面积求它边长、立方根是从已知立方体的体积求它边长等典型的实际问题引出的,再如用有理数估计无理数的大小也是紧密结合实际进行的。编写时,将本章内容与实际紧密联系起来,可以使学生在解决实际问题的过程中,认识实数的有关概念和运算。

(二)加强知识间的纵向联系

本章内容属于“数与代数”这个领域,有关数的内容,学生在七年级上册已经系统地学过有理数,对有理数的概念和运算等有了较深刻的认识,本章是在有理数的基础上学习实数的初步知识,本章很多内容是有理数相关内容的延续和推广,因此,本章编写时,注意加强知识间的相互联系,使学生更好地体会数的扩充过程中表现出来的概念、运算等的一致性和发展变化。例如,对于绝对值和相反数的概念,实数的运算法则和运算性质,平方与开平方、立方与开立方的互为逆运算关系等都是在有理数的基础上展开的。另外,本章前两节“平方根”“立方根”在内容上基本是平行的,因此,编写 “立方根”这节时,充分利用了类比的方法,例如类比平方根的概念的引入方式给出立方根的概念,类比开平方运算给出开立方运算,类比平方与开平方运算的互逆关系研究立方与开立方运算的互逆关系等。这样的编写方法,有助于加强知识间的相互联系,通过类比已学的知识学习新知识,使学生的学习形成正迁移。

(三)留给学生探索交流的空间

根据本章内容的特点,对于一些重要的概念和结论,编写时注意了让学生通过观察、思考、讨论等探究活动归纳得出结论的过程。例如,对于平方根概念的引入,教科书首先通过一个问题情景,引出已知正方形的面积求边长的问题,接着又让学生通过填表的方式,计算几个不同面积的正方形的边长,使学生感受到这些问题与以前学过的已知正方形的边长求面积的问题是一个相反的过程,并由此指出,这些问题抽象成数学问题就是已知一个正数的平方,求这个正数的问题,并在此基础上给出算术平方根的概念,这样就让学生通过一些具体活动,在对算术平方根有些感性认识的基础上归纳给出这个概念。再比如,在讨论数的立方根的特征时,教材首先设置“探究”栏目,在栏目中以填空的方式让学生计算一些具体的正数、负数和0的立方根,寻找它们各自的特点,通过学生讨论交流等活动,归纳得出“正数的立方根是正数,0的立方根是0,负数的立方根是负数”的结论,这样就让学生通过探究活动经历了一个由特殊到一般的认识过程,在探究活动的过程中发展思维能力,有效改变学生的学习方式。

三、几个值得关注的问题

(一)把握教学要求

本册书对于某些内容采用提前渗透、逐步提高的编写方式。例如,对于平面直角坐标系,在第6章“平面直角坐标系”中研究了平面内的点与有序数对的对应关系,其中点的坐标都是有理数,在本章将把点的坐标由有理数的情形扩展到实数范围,并建立平面内的点与有序实数对的一一对应关系,为后续学习函数的图象、函数与方程和不等式的关系等打下基础。

对于平移变换,教课书在第5章“相交线与平行线”中安排了一节“平移”,探讨得出“平移前后的两个图形的对应点的连线平行且相等”等平移变换的基本性质,又在第6章“平面直角坐标系”中安排了用坐标方法研究平移的内容,从坐标的角度进一步认识平移变换,这时平移中遇到的坐标都是有理数的情况。在本章,由于建立了点与有序实数对的一一对应关系,本章又在实数范围内研究平移的内容,为后续学习利用平移变换探索平面图形的几何性质以及综合运用几种变换(平移、旋转、轴对称、相似等)进行图案设计等打下基础。

本章还通过一个例题学习了实数的简单运算,安排这个例题的目的是要说明有理数的运算法则和运算性质等在实数范围内仍然成立,关于实数的运算在后面的“二次根式”一章中还要继续研究。

另外,本章也提前渗透了一些数学思想和方法。比如,本章的数学活动1,涉及到勾股定理的内容,让学生利用勾股定理,在数轴上画出表示几个无理数的点。这里只是结合无理数渗透了勾股定理,关于勾股定理以后还要进行专门的研究。

综上所述,本章教学时要注意把握教学要求,以一种发展的、动态的观点看待教学要求,不能要求一次到位。

(二)发挥计算器的作用,加强估算能力的培养

使用计算器进行复杂运算,可以使学习的重点更好地集中到理解数学的本质上来,估算是一种具有实际应用价值的运算能力。提倡使用计算器进行复杂运算,加强估算,综合运用笔算、计算器和估算等方式培养学生的运算能力,是本章的一个教学要求。为了达到这个教学目的,本章专门安排了利用计算器求数的平方根和立方根以及利用有理数估计无理数的大致范围等内容。因此,教学中可以结合具体内容,综合利用各种途径培养学生的运算能力。

(三)重视人文教育

无理数的发现引发了数学史上的第一次危机,是数学发展史上的重要里程碑。无理数的发现经历了一个漫长而艰苦的过程,在发现无理数的过程中,体现了人类为追求真理而不懈努力的精神。因此,教学时可以结合无理数的发现,挖掘数学知识的文化内涵,使学生感受丰富的数学文化,开阔他们的眼界,增长他们的见识。

另外,本章编写时注意加强与实际的联系,在选择素材时,力求选取学生感兴趣的和富有时代气息的实际问题。例如,本章选择了我国神舟5号载人飞船取得圆满成功的素材,通过这个素材可以使学生从数学的角度更多地了解航天知识,培养学生的民族自豪感和爱国主义情操,激励学生更加努力地学习,这样使学生在学习数学的同时,也得到了人文方面的教育。

精品小编为大家提供的初二数学实数教学计划大家仔细阅读了吗?最后祝同学们学习进步。

相关推荐:

华师大版初二数学《幂的运算》教学计划模板(16年)  

华师大版初二数学《整式的乘法》教学计划模板(初二必备) 

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。