编辑:sx_yanxf
2016-08-06
如果要想做出高效、实效,务必先从自身的工作计划开始。有了计划,才不致于使自己思想迷茫。下文为您准备了初一上册数学有理数的乘除法教学计划范文。
一、内容和内容解析
1.内容
有理数乘法法则.
2.内容解析
有理数的乘法是继有理数的加减法之后的又一种基本运算.有理数乘法既是有理数运算的深入,又是进一步学习有理数的除法、乘方的基础,对后续代数学习是至关重要的.
与有理数加法法则类似,有理数乘法法则也是一种规定,给出这种规定要遵循的原则是“使原有的运算律保持不变”.本节课要在小学已掌握的乘法运算的基础上,通过合情推理的方式,得到“要使正数乘正数(或0)的规律在正数乘负数、负数乘负数时仍然成立,那么运算结果应该是什么”的结论,从而使学生体会乘法法则的合理性.与加法法则一样,正数乘负数、负数乘负数的法则,也要从符号和绝对值来分析.由于绝对值相乘就是非负数相乘,因此,这里关键是要规定好含有负数的两数相乘之积的符号,这是有理数乘法的本质特征,也是乘法法则的核心.
基于以上分析,可以确定本课的教学重点是两个有理数相乘的符号法则.
二、目标及其解析
1.目标
(1)理解有理数乘法法则,能利用有理数乘法法则计算两个数的乘法.
(2)能说出有理数乘法的符号法则,能用例子说明法则的合理性.
2.目标解析
达成目标(1)的标志是学生在进行两个有理数乘法运算时,能按照乘法法则,先考虑两乘数的符号,再考虑两乘数的绝对值,并得出正确的结果.
达成目标(2)的标志是学生能通过具体例子说明有理数乘法的符号法则的归纳过程.
三、教学问题诊断分析
有理数的乘法与小学学习的乘法的区别在于负数参与了运算.本课要以正数、0之间的运算为基础,构造一组有规律的算式,先让学生从算式左右各数的符号和绝对值两个角度观察这些算式的共同特点并得出规律,再以问题“要使这个规律在引入负数后仍然成立,那么应有……”为引导,让学生思考在这样的规律下,正数乘负数、负数乘正数、两个负数相乘各应有什么运算结果,并从积的符号和绝对值两个角度总结出规律,进而给出有理数乘法法则,在这个过程中体会规定的合理性.上述过程中,学生对于为什么要讨论这些问题、什么叫“观察下面的乘法算式”、从哪些角度概括算式的规律等,都会出现困难.为了解决这些困难,教师应该在“如何观察”上加强指导,并明确提出“从符号和绝对值两个角度看规律”的要求.
本课的教学难点是:如何观察给定的乘法算式;从哪些角度概括算式的规律.
四、教学过程设计
问题1 我们知道,有理数分为正数、零、负数三类.按照这种分类,两个有理数的乘法运算会出现哪几种情况?
教师引导学生从有理数分类的角度考虑,区分出有理数乘法的情况有:正数乘正数、正数与0相乘、正数乘负数、负数乘正数、负数乘负数.
设计意图:有理数分为正数、零、负数,由此引出两个有理数相乘的几种情况,既复习有关知识,为下面的教学做好准备,又渗透了分类讨论思想.
问题2 下面从我们熟悉的乘法运算开始.观察下面的乘法算式,你能发现什么规律吗?
3×3=9,
3×2=6,
3×1=3,
3×0=0.
追问1:你认为问题要我们“观察”什么?应该从哪几个角度去观察、发现规律?
如果学生仍然有困难,教师给予提示:
(1)四个算式有什么共同点?——左边都有一个乘数3.
(2)其他两个数有什么变化规律?——随着后一个乘数逐次递减1,积逐次递减3.
设计意图:构造这组有规律的算式,为通过合情推理,得到正数乘负数的法则做准备.通过追问、提示,使学生知道“如何观察”“如何发现规律”.
教师:要使这个规律在引入负数后仍然成立,那么,3×(-1)=-3,这是因为后一乘数从0递减1就是-1,因此积应该从0递减3而得-3.
追问2:根据这个规律,下面的两个积应该是什么?
3×(-2)= ,
3×(-3)= .
练习:请你模仿上面的过程,自己构造出一组算式,并说出它的变化规律.
设计意图:让学生自主构造算式,加深对运算规律的理解.
追问3:从符号和绝对值两个角度观察这些算式(指师生给出的所有含正数乘负数的算式),你能说说它们的共性吗?
先让学生观察、叙述、补充,教师再总结:都是正数乘负数,积都为负数,积的绝对值等于各乘数绝对值的积.
设计意图:先得到一类情况的结果,降低归纳概括的难度,同时也为后面的学习奠定基础.
问题3观察下列算式,类比上述过程,你又能发现什么规律?
3×3=9,
2×3=6,
1×3=3,
0×3=0.
鼓励学生模仿正数乘负数的过程,自己独立得出规律.
设计意图:为得到负数乘正数的结论做准备;培养学生的模仿、概括的能力.
追问1:要使这个规律在引入负数后仍然成立,你认为下面的空格应各填什么数?
(-1)×3= ,
(-2)×3= ,
(-3)×3= .
练习:请你模仿上面的过程,自己构造出一组算式,并说出它的变化规律.
追问2 :类比正数乘负数规律的归纳过程,从符号和绝对值两个角度观察这些算式(指师生给出的所有含正数乘负数的算式),你能说说它们的共性吗?
先让学生观察、叙述、补充,教师再总结:都是负数乘正数,积都为负数,积的绝对值等于各乘数绝对值的积.
追问3:正数乘负数、负数乘正数两种情况下的结论有什么共性?你能把它概括出来吗?
设计意图:让学生模仿已有的讨论过程,自己得出负数乘正数的结论,并进一步概括出“异号两数相乘,积的符号为负,积的绝对值等于各乘数绝对值的积”.既使学生感受法则的合理性,又培养他们的归纳思想和概括能力.
问题4 利用上面归纳的结论计算下面的算式,你能发现其中的规律吗?
(-3)×3= ,
(-3)×2= ,
(-3)×1= ,
(-3)×0= .
标签:数学教学计划
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。