编辑:sx_yanxf
2016-04-08
说课稿是教师为讲授新内容而提前所做的计划,他可以提高学生的兴趣,接下来为大家提供了初一年级数学第四单元第4课时说课稿范文,供大家参考。
一、教学目标
本节课在学习了用一元一次方程解决实际问题、不等式的性质、一元一次不等式的初步解法等知识的基础上,继续结合一些实际问题,重点讨论了两方面内容:1、进一步掌握如何解不等式,归纳解一元一次不等式的一般步骤。从而使学生体会到不等式是解决涉及求未知数取值范围的有力工具,是刻画现实世界中不等关系的一种有效数学模型,既是对已学知识的运用和深化,又为下节一元一次不等式组的学习奠定基础;2、如何用一元一次不等式解决实际问题,归纳其基本过程。
在课程标准中,有关本节课的要求是:会解简单的一元一次不等式,并能在数轴上表示出解集;能够根据具体问题中的数量关系,列出一元一次不等式,解决简单的问题。
根据主题教研以及学生的认知水平,制定的教学目标如下:
1阅读理解实际问题找出不等关系列出一元一次不等式来解决
2进一步掌握一元一次不等式的解法
3通过应用一元一次不等式描述不等关系解决实际问题,发展学生由实际问题转化为数学问题的能力,体会不等式是解决实际问题有效数学模型,渗透数学建模思想。
4通过类比一元一次方程解决实际问题的过程以及一元一次方程的解法,体会一元一次不等式中蕴含的类比、化归思想。
二、教学重点、难点
以不等式为工具,阅读问题分析问题、解决问题是本章的重点,掌握一元一次不等式的解法及解集的几何表示是本章的基本技能,因此,本节课的教学重点为:由实际问题中的不等关系列出不等式,进一步掌握一元一次不等式的解法。由于学生初次接触含有不等关系的实际问题,因此对于如何分析出其中的不等关系,并应用一元一次不等式描述不等关系,从而解决实际问题有一定难度,本节课的教学难点为:不等关系的分析与数学表示。
三、教学方式与手段
在本节课的设计中,从学生已有的生活实际经验出发,通过设置若干个具有层次性、挑战性的探究点,激发学生探究兴趣,教师引导学生在独立阅读、思考、互相交流的活动中主动学习、探究学习,并适时恰当地引导、帮助学生找到解决问题的方法。因此,本节课采用的教学方式是启发式教学方式。
四、教学过程
本节课的教学程序分为创设情境、激趣质疑;探究新知、解决问题;巩固训练、加深理解;归纳小结、分层作业四个环节进行。
(一)创设情境、激趣质疑
教师首先引导学习回忆一元一次不等式的初步解法,然后提问:“你觉得我们学习一元一次不等式可以解决哪些问题呢?对于我们的生活实际有帮助吗?”然后教师出示问题情境:
甲、乙两商店以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲店累计购买100元商品后,再购买的商品按原价的90%收费;在乙店累计购买50元商品后,再购买的商品按原价的95%收费 ,假如派你去购买这种商品若干件,从节省费用考虑,你应选择哪个商场购物呢?
这是一个生活中常见的购物问题,与学生生活距离较近,
(二)探究新知,解决问题
本题具有一定综合性,考虑到学生的认知水平,为了降低学生探究的难度,让学生阅读本题,并完成我为学生设置的5个由易到难的问题,引导学生分情况分问题进行有效探究:
(1)甲商场购物款达到多少元后可以优惠;乙商场购物款达到多少元后可以优惠?
(2)现在有4个人,准备分别消费40元、80元、140元、160元,那么去哪家商店更合算?
(3)如果累计购物超过100元,那么在甲店购物花费小吗?
(4)累计购物超过100元而不到150元时,在哪个店购物花费小?累计购物恰好是150元时,在哪个店购物花费小?
(5)根据甲乙商店的销售方案,顾客怎样选择商店购物能获得更大优惠?你能为消费者设计一套方案吗?
教学中,首先让学生独立思考,然后组织学生分组讨论,交流解决问题的过程,教师深入小组参与活动,适时予以指导。5个问题中,问题(3)最为复杂,需要列不等式解决,是本节课的重点也是难点,应予以重点讨论。教师可提出以下问题启发学生:
1此时,你能计算出两个商场的花费吗?为什么?
2你能用式子表示出两个商场的花费吗?怎样表示?
3如果假设在甲店购物花费小,你能用不等式表示两个商场的花费关系吗?
4这个不等式你会解吗?如果不会,那么把不等号换为等号后你会解吗?他们的解法相同吗?
问题解决完之后,引导学生归纳用一元一次不等式解决实际问题的一般过程,并与一元一次方程解决实际问题的一般过程进行对比,使学生体会到二者之间的区别与联系。
标签:数学说课稿
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。