编辑:
2017-05-04
②线段AC与BD相交于点O,OA=OC,OB=OD,把△OCD绕点O旋转180°,你有什么发现?先让学生从旋转变换的角度分别观察两个图形之间的关系,必要时采用多媒体演示,加深学生的印象,从而引入中心对称的定义。让学生体会到知识间的内在联系,中心对称实际上是旋转变换的一种特殊形式(中心对称中要求旋转角必须为180度)渗透了从一般到特殊的数学思想方法。接着,对“轴对称”和“中心对称”的概念进行比较,我采用列表格的方式,从三个方面分别让学生去填,以便加深对两个概念的区别与联系的理解。
2、动手实践,探究新知
学生在教师的引导下动手操作,完成第63页探究,旋转三角尺,画关于点O对称的两个三角形。学生自己动手画出两个中心对称的三角形后,及时开展中心对称性质的研究。学生在观察和讨论后,由师生合作,归纳出中心对称的性质: (1) 关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分; (2) 关于中心对称的两个图形是全等图形.让学生尝试自己证明△ABC与△A′B′C′全等,然后在教师的引导下相互交流。
3、应用新知
1) 讲授64页例1。(1)选择点O为对称中心,画出点A关于点O的对称点A′; (2)选择点O为对称中心,画出与△ABC关于点O的对称△A′B′C′.在老师的引导下,共同完成作图,并规范画图方法:要画一个多边形关于已知点的对称图形,只要画出这个多边形的各个顶点关于已知点的对称点,再顺次连接各点即可。在本次活动中,教师应重点关注: (1) 学生画出图形后,能否加深对中心对称的性质的理解; (2) 学生不同的作图方法.
2)、课后练习。以适当的练习巩固本节课的知识点,使学生能熟练画出成中心对称的图形,巩固学生的作图能力,并会简单应用中心对称的性质.
3)、拓展应用
已知四边形ABCD,分别以顶点A,BC边的中点,四边形内部的一点为对称中心,画对称图形在同一个图形中,进行不同的变式训练,来巩固加深同学们对知识的理解,提高学生运用知识,解决问题的能力。
4、归纳小结
今天这节课即将结束,你能告诉老师你的收获吗?
学生相互归纳和补充(幻灯片展示)。教师应重点关注不同层次的学生对本节知识的理解、掌握程度.相互交流一下学习过程的感受、认识、想法和收获。
5、布置作业 课本67页第1题;68页第7题
四、教学评价
本课由问题引入概念,从而激发学生研究问题、解决问题的欲望。接着,让学生自己动手操作,直观地得出两个图形关于某点对称的概念,并加深对概念的理解。充分利用多媒体演示,帮助学生掌握两个图形关于一点中心对称的概念、性质和画法,尽量使图形直观化,效果更明显。在教学时使学生的尝试和探究贯穿课堂全过程,同时重视教师的引导、指导和示范,还有教师与学生、学生与学生的互动等。这样有利于学生对概念的理解,也有利于培养学生的学习能力和学习习惯。
中心对称说课稿就到这儿了,体会每篇文章的不同,摘取自己想要的,友情提醒,理解最重要哦!!!【数学说课稿】帮助大家轻松愉快地总结功课~
相关推荐:
标签:数学说课稿
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。