您当前所在位置:首页 > 高考 > 海南高考 > 海南高考大纲说明

2014年海南高考大纲说明(数学理)

编辑:

2014-03-10

 

4.幂函数

(1)了解幂函数的概念.

(2)结合函数的图像,了解它们的变化情况.

5.函数与方程   结合二次函数的图像,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数.  6.函数模型及其应用

(1)了解指数函数、对数函数、幂函数的增长特征,结合具体实例体会直线上升、指数增长、对数增长等不同函数类型增长的含义.

(2)了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.  (三)立体几何初步

1.空间几何体

(1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.

(2)能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二侧法画出它们的直观图.

(3)会用平行投影方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.

(4)了解球、棱柱、棱锥、台的表面积和体积的计算公式

2.点、直线、平面之间的位置关系

(1)理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理.

◆公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点在此平面内.

◆公理2:过不在同一条直线上的三点,有且只有一个平面.

◆公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.

◆公理4:平行于同一条直线的两条直线平行.

◆定理:空间中如果一个角的两边分别平行,那么这两个角相等或互补.

(2)以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理.  通过直观感知、操作确认,归纳出以下判定定理.

◆平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.

◆一个平面内的两条相交直线与另一个平面都平行,则这两个平面平行.

◆一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.

◆一个平面经过另一个平面的垂线,那么这两个平面互相垂直.  通过直观感知、操作确认,归纳出以下性质定理,并能够证明.

◆一条直线与一个平面平行,则经过该直线的任一个平面与此平面的交线和该直线平行.

◆如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行.

◆垂直于同一个平面的两条直线平行.

◆两个平面垂直,则一个平面内垂直于它们交线的直线与另一个平面垂直.

(3)能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.

(四)平面解析几何初步

1.直线与方程

(1)在平面直角坐标系中,结合具体图形掌握确定直线位置的几何要素.

(2)理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.

(3)能根据两条直线的斜率判定这两条直线平行或垂直.

(4)掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.

(5)能用解方程组的方法求两条相交直线的交点坐标.

(6)掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.

2.圆与方程

(1)掌握确定圆的几何要素,掌握圆的标准方程与一般方程.

(2)能根据给定直线、圆的方程,判断直线与圆的位置关系;能根据给定两个圆的方程判断圆与圆的位置关系.

(3)能用直线和圆的方程解决一些简单的问题.

(4)初步了解用代数方法处理几何问题的思想.

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。