您当前所在位置:首页 > 高考 > 江苏高考 > 江苏高考数学

2014高考数学知识点汇总:空间向量与立体几何

编辑:sx_bilj

2014-03-07

2014高考数学知识点汇总:空间向量与立体几何

一、考点概要:

1、空间向量及其运算

(1)空间向量的基本知识:

①定义:空间向量的定义和平面向量一样,那些具有大小和方向的量叫做向量,并且仍用有向线段表示空间向量,且方向相同、长度相等的有向线段表示相同向量或相等的向量。

②空间向量基本定理:

ⅰ定理:如果三个向量 不共面,那么对于空间任一向量 ,存在唯一的有序实数组x、y、z,使 。且把 叫做空间的一个基底, 都叫基向量。

ⅱ正交基底:如果空间一个基底的三个基向量是两两相互垂直,那么这个基底叫正交基底。

ⅲ 单位正交基底:当一个正交基底的三个基向量都是单位向量时,称为单位正交基底,通常用 表示。

ⅳ 空间四点共面:设O、A、B、C是不共面的四点,则对空间中任意一点P,都存在唯一的有序实数组x、y、z,使 。

③共线向量(平行向量):

ⅰ定义:如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量,记作 。

ⅱ规定:零向量与任意向量共线;

ⅲ共线向量定理:对空间任意两个向量 平行的充要条件是:存在实数λ,使 。

④共面向量:

ⅰ定义:一般地,能平移到同一平面内的向量叫做共面向量;空间的任意两个向量都是共面向量。

ⅱ向量与平面平行:如果直线OA平行于平面或 在α内,则说向量 平行于平面α,记作 。平行于同一平面的向量,也是共面向量。

ⅲ共面向量定理:如果两个向量 、 不共线,则向量 与向量 、 共面的充要条件是:存在实数对x、y,使 。

ⅳ空间的三个向量共面的条件:当 、 、 都是非零向量时,共面向量定理实际上也是 、 、 所在的三条直线共面的充要条件,但用于判定时,还需要证明其中一条直线上有一点在另两条直线所确定的平面内。

ⅴ共面向量定理的推论:空间一点P在平面MAB内的充要条件是:存在有序实数对x、y,使得 ,或对于空间任意一定点O,有 。

⑤空间两向量的夹角:已知两个非零向量 、 ,在空间任取一点O,作 , (两个向量的起点一定要相同),则叫做向量 与 的夹角,记作 ,且 。

⑥两个向量的数量积:

ⅰ定义:已知空间两个非零向量 、 ,则 叫做向量 、 的数量积,记作 ,即: 。

ⅱ规定:零向量与任一向量的数量积为0。

ⅲ注意:两个向量的数量积也叫向量 、 的点积(或内积),它的结果是一个实数,它等于两向量的模与其夹角的余弦值。

ⅳ数量积的几何意义: 叫做向量 在 方向上的投影(其中θ为向量 和 的夹角)。

即:数量积 等于向量 的模与向量 在 方向上的投影的乘积。

ⅴ基本性质:

ⅵ运算律:

(2)空间向量的线性运算:

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。