您当前所在位置:首页 > 高考 > 高考模拟题 > 高考数学模拟题

2011年安徽省高考理科数学模拟试题

编辑:

2014-04-08

二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卡的相应位置

(11)如图所示,程序框图(算法流程图)的输出结果是____________

(12) ________________

(13)已知向量 、 满足 ,且 , ,则 与 的夹角为_____________________

(14)已知  的一个内角为120o,并且三边长构成公差为4的等差数列,则 的面积为_______________

(15)在平面直角坐标系中,如果 与???就称点 ??题中正确的是_____________(写出所有正确命题的编号).

①存在这样的直线,既不与坐标轴平行又不经过任何整点

②如果 与 都是无理数,则直线 不经过任何整点

③直线 经过无穷多个整点,当且仅当 经过两个不同的整点

④直线 经过无穷多个整点的充分必要条件是: 与 都是有理数

⑤存在恰经过一个整点的直线

三、解答题。本小题共6小题,共75分。解答应写出文字说明,证明过程或演算步骤.解答写在答题卡上的指定区域内。

(16)(本小题满分12分)

**  ,其中 为正实数

(Ⅰ)当  时,求 的极值点;

(Ⅱ)若 为 上的单调函数,求 的取值范围。

(17)(本小题满分12分)

如图, 为多面体,平面 与平面 垂直,点 在线段 上, △ ,△ ,△ 都是正三角形。

(Ⅰ)证明直线 ∥ ;

(Ⅱ)求梭锥 — 的体积。

(18)(本小题满分13分)

在 +2数列中,加入 个实数,使得这 +2个数构成递增的等比数列,将这 +2个数,令 ,

(Ⅰ)求数列 的等项公式;

(Ⅱ)设求数列 的前 项和 .

(19)(本小题满分12分)

(Ⅰ)设 证明

(Ⅱ) ,证明

(20)(本小题满分13分)

工作人员需进入核电站完成某项具有高辐射危险的任务,每次只派一个人进去,且每个人只需一次,工作时间不超过10分钟,如果有一个人10分钟内不能完成任务则撤出,再派下一个人。现在一共只有甲、乙、丙一个人可派,他们各自能完成任务的概率分别p1,p2,p3,假设p1,p2,p3,互相相等,且规定各人能否完成任务的事件相互独立.

(Ⅰ)如果按甲在先,乙次之,丙最后的顺序派人,球任务能被完成的概率。若改变三个人被派出的先后顺序,任务能被完成的概率是否发生变化?

(Ⅱ)若按某指定顺序派人,这三个人各自能完成任务的概率依次为q1,q2,q3,其中q1,q2,q3是p1,p2,p3的一个排列,求所需要派出人员数目X的分布列和均值(数字期望)EX;

(Ⅲ)假定l>p1>p2>p3,试分析以怎样的先后顺序派出人员,可使所需派出的人员数目的均值(数字期望)达到最小。

(21)(本小题满分13分)

若A=0,点A的坐标为(1,1),点B在抛物线y=x上运动,点Q满足 =  ,经过点Q与x轴垂直的直线交抛物线于点M,点P满足 = ,求点P的轨迹方程。

安徽省高考理科数学模拟试题就介绍到这里了,更多精彩内容请继续关注精品学习网!

相关推荐:

2011年四川省高考文科数学模拟试题

湖北省2013年高考理科数学模拟试题 

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。