编辑:
2014-12-23
其次,我们要有一套训练有素的数学复习标准步骤,下面就让我们循着通往数学满分的路,看看如何驾驭自己的思想走上数学高分的捷径。
一、解题思路的理解和来源
平时大家评论一个孩子“聪明”或者“不聪明”的依据是看这个孩子对某件事或很多事得反应以及有没有他自己的看法。如一个“聪明”的孩子,往往反应快、思路清楚,有自己的主见。那么我们认为“反应快、思路清楚、有主见”是聪明的前提。学习成绩好的同学,反应快、思路清楚、有主见就是他们的必备条件。
那么解题也如此,必须反应快、思路清楚、有主见。同一道题,不同的学生从不同的角度去理解,由不同的看法最终汇聚成正确的解题过程,这是解题的必然。无论是推导、还是硬性套用、凭借经验做题,都是思路的一种。有的同学由开始思路不清渐渐转变为清楚,有的同学根本没有思路,这就形成了做题的上的差距。
如果能教会给学生,在处理数学问题上,第一时间最短的思考路径,并且清晰无比,这样,每个学生都是“聪明的孩子”,在做题上就能攻无不克战无不胜。
解题思路的来源就是对题的看法,也就是第一出发点在哪。
二、如何在短期内训练解题能力
数学解题思想其实只要掌握一种即可,即必要性思维。这是解答数学试题的万用法门,也是最直接、最快捷的答题思想。什么是必要性思维?必要性思维就是通过所求结论或者某一限定条件寻求前提的思想。几乎所有数学命题都可以用这一思想进行破解。这里我用视频来举两个简单的例子,说明数学必要性思维是如何应用的。
纵观近几年高考数学试题,可以看出试题加强了对知识点灵活应用的考察。这就对考生的思维能力要求大大加强。如何才能提升思维能力,很多考生便依靠题海战术,寄希望多做题来应对多变的考题,然而凭借题海战术的功底仍然难以获得科学的思维方式,以至收效甚微。最主要的原因就是解题思路随意造成的,并非所谓“不够用功”等原因。由于思维能力的原因,考生在解答高考题时形成一定的障碍。主要表现在两个方面,一是无法找到解题的切入点,二是虽然找到解题的突破口,但做这做着就走不下去了。如何解决这两大障碍呢?本章将介绍行之有效的方法,使考生获得有益的启示。
三.寻找解题途径的基本方法——从求解(证)入手
遇到有一定难度的考题我们会发现出题者设置了种种障碍。从已知出发,岔路众多,顺推下去越做越复杂,难得到答案,如果从问题入手,寻找要想获得所求,必须要做什么,找到“需知”后,将“需知”作为新的问题,直到与“已知“所能获得的“可知”相沟通,将问题解决。事实上,在不等式证明中采用的“分析法”就是这种思维的充分体现,我们将这种思维称为“逆向思维”——目标前提性思维。
四.完成解题过程的关键——数学式子变形
解答高考数学试题遇到的第二障碍就是数学式子变形。一道数学综合题,要想完成从已知到结论的过程,必须经过大量的数学式子变形,而这些变形仅靠大量的做题过程是无法真正完全掌握的,很多考生都有这样的经历,在解一道复杂的考题时,做不下去了,而回过头来再看一看答案,才恍然大悟,解法这么简单,后悔莫及,埋怨自己怎么糊涂到没有把式子再这么变一下呢?
其实数学解题的每一步推理和运算,实质都是转换(变形).但是,转换(变形)的目的是更好更快的解题,所以变形的方向必定是化繁为简,化抽象为具体,化未知为已知,也就是创造条件向有利于解题的方向转化.还必须注意的是,一切转换必须是等价的,否则解答将出现错误。解决数学问题实际上就是在题目的已知条件和待求结论中架起联系的桥梁,也就是在分析题目中已知与待求之间差异的基础上,化归和消除这些差异。寻找差异是变形依赖的原则,变形中一些规律性的东西需要总结。在后面的几章中我们列举的一些思维定势,就是在数学思想指导下总结出来的。在解答高考题中时刻都在进行数学变形由复杂到简单,这也就是转化,数学式子变形的思维方式:时刻关注所求与已知的差异。
标签:高考数学复习指导
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。