编辑:sx_liujy
2016-01-25
在人类历史发展和社会生活中,数学发挥着不可替代的作用,下面是湖南2016年高考数学一轮备考专项练习,请考生认真练习。
题型一、直线和椭圆的位置关系
例1:如图所示,椭圆C1:+=1(a>b>0)的离心率为,x轴被曲线C2:y=x2-b截得的线段长等于C1的短轴长。C2与y轴的交点为M,过坐标原点O的直线l与C2相交于点A,B,直线MA,MB分别与C1相交于点D,E。
(1)求C1,C2的方程;
(2)求证:MA⊥MB;
(3)记△MAB,△MDE的面积分别为S1,S2,若=λ,求λ的取值范围。
破题切入点:
(1)利用待定系数法求解曲线C1,C2的方程。
(2)设出直线AB和曲线C2联立,利用坐标形式的向量证明。
(3)将S1和S2分别表示出来,利用基本不等式求最值。
(1)解 由题意,a2=2b2。
又2=2b,得b=1。
所以曲线C2的方程:y=x2-1,椭圆C1的方程:+y2=1。
(2)证明:设直线AB:y=kx,A(x1,y1),B(x2,y2),
由题意,知M(0,-1)。
则x2-kx-1=0=(x1,y1+1)·(x2,y2+1)
=(k2+1)x1x2+k(x1+x2)+1
=-(1+k2)+k2+1=0,
所以MA⊥MB。
(3)解:设直线MA的方程:y=k1x-1,直线MB的方程:y=k2x-1,
由(2)知k1k2=-1,M(0,-1),
由解得或
所以A(k1,k-1)。
同理,可得B(k2,k-1)。
故S1=MA·MB=·|k1||k2|。
由解得或
所以D。
同理,可得E。
故S2=MD·M
则λ的取值范围是[,+∞)。
题型二、直线和双曲线的位置关系
例2:已知双曲线C:x2-y2=1及直线l:y=kx-1。
(1)若l与C有两个不同的交点,求实数k的取值范围;
(2)若l与C交于A,B两点,O是坐标原点,且△AOB的面积为,求实数k的值。
破题切入点:
(1)联立方程组,利用Δ>0求出k的取值范围。
(2)联立方程用根与系数的关系求解。
解:(1)双曲线C与直线l有两个不同的交点,
则方程组有两个不同的实数根,
整理得(1-k2)x2+2kx-2=0。
∴解得-|x2|时,
S△OAB=S△OAD-S△OBD=(|x1|-|x2|)
=|x1-x2|;
当A,B在双曲线的两支上且x1>x2时,
S△OAB=S△ODA+S△OBD=(|x1|+|x2|)
=|x1-x2|。
∴S△OAB=|x1-x2|=,∴(x1-x2)2=(2)2,
即2+=8,解得k=0或k=±。
又∵-0,b>0)的上焦点为F,上顶点为A,B为虚轴的端点,离心率e=,且S△ABF=1-。抛物线N的顶点在坐标原点,焦点为F。
(1)求双曲线M和抛物线N的方程;
(2)设动直线l与抛物线N相切于点P,与抛物线的准线相交于点Q,则以PQ为直径的圆是否恒过y轴上的一个定点?如果是,试求出该点的坐标,如果不是,请说明理由。
标签:高考数学试题
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。