您当前所在位置:首页 > 高考 > 高考数学 > 高考数学试题

数学2016年高考二轮复习用样本估计总体专题检测

编辑:sx_liujy

2016-03-04

许多场合下,只能从总体中抽取一个样本作为总体的代表,这一过程称为抽样,精品学习网整理了用样本估计总体专题检测,帮助广大高中学生学习数学知识!

一、选择题

1.已知样本7,10,14,8,7,12,11,10,8,10,13,10,8,11,8,9,12,9,13,20,那么这组数据落在8.5~11.5的频率为( )

(A)0.5 (B)0.4 (C)0.3 (D)0.2

2.如图是总体密度曲线,下列说法正确的是( )

(A)组距越大,频率分布折线图越接近于它

(B)样本容量越小,频率分布折线图越接近于它

(C)阴影部分的面积代表总体在(a,b)内取值的百分比

(D)阴影部分的平均高度代表总体在(a,b)内取值的百分比

3.10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,

12,设其平均数为a,中位数为b,众数为c,则有( )

(A)a>b>c (B)b>c>a

(C)c>a>b (D)c>b>a

4.(2013·三明模拟)在样本的频率分布直方图中,共有11个小长方形,若中间一个小长方形的面积等于其他10个小长方形的面积和的且样本容量为160,则中间一组的频数为( )

(A)32 (B)0.2 (C)40 (D)0.25

5.商场在国庆黄金周的促销活动中,对10月2日9时至14时的销售额进行统计,其频率分布直方图如图所示,已知9时至10时的销售额为2.5万元,则11时至12时的销售额为( )

(A)6万元 (B)8万元

(C)10万元 (D)12万元

6.(2013·济南模拟)为选拔运动员参加比赛,测得7名选手的身高(单位:cm)分布茎叶图为,记录的平均身高为177 cm,有一名候选人的身高记录不清楚,其末位数字记为x,那么x的值为( )

(A)5 (B)6 (C)7 (D)8

7.(能力挑战题)如图,样本A和B分别取自两个不同的总体,它们的样本平均数分别为和样本标准差分别为sA和sB,则( )

(A) (B)

(C) (D)

二、填空题

8.(2012·山东高考)如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5 ℃的城市个数为11,则样本中平均气温不低于25.5 ℃的城市个数为____________.

9.(2013·肇庆模拟)给出以下三幅统计图及四个结论:

①从折线统计图能看出世界人口的变化情况;②2050年非洲人口大约将达到15亿;③2050年亚洲人口比其他各洲人口的总和还要多;④从1957年到2050年各洲中北美洲人口增长速度最慢.

其中结论正确的是____________.

10.(2012·广东高考)由正整数组成的一组数据x1,x2,x3,x4,其平均数和中位数都是2,且标准差等于1,则这组数据为____________.(从小到大排列)

三、解答题

11.随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图.

(1)根据茎叶图判断哪个班的平均身高较高.

(2)计算甲班10名同学身高的方差.

12.(2012·安徽高考)若某产品的直径长与标准值的差的绝对值不超过1 mm时,则视为合格品,否则视为不合格品.在近期一次产品抽样检查中,从某厂生产的此种产品中,随机抽取5 000件进行检测,结果发现有50件不合格品.计算这50件不合格品的直径长与标准值的差(单位:mm), 将所得数据分组,得到如下频率分布表:

分 组 频 数 频 率 [-3,-2) 0.10 [-2,-1) 8 (1,2] 0.50 (2,3] 10 (3,4] 合计 50 1.00 (1)将上面表格中缺少的数据填充完整;

(2)估计该厂生产的此种产品中,不合格品的直径长与标准值的差落在区间(1,3]内的概率.

(3)现对该厂这种产品的某个批次进行检查,结果发现有20件不合格品.据此估算这批产品中的合格品的件数.

13.(能力挑战题)2012年3月2日,国家环保部发布了新修订的《环境空气质量标准》.其中规定:居民区中的PM2.5的年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米. 某城市环保部门随机抽取了一居民区去年40天的PM2.5的24小时平均浓度的监测数据,数据统计如下:

组别 PM2.5(微克/立方米) 频数(天) 频率 第一组 (0,15] 4 0.1 第二组 (15,30] 12 y 第三组 (30,45] 8 0.2 第四组 (45,60] 8 0.2 第五组 (60,75] x 0.1 第六组 (75,90) 4 0.1 (1)试确定x,y的值,并写出该样本的众数和中位数(不必写出计算过程).

(2)完成相应的频率分布直方图.

(3)求出样本的平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境是否需要改进?说明理由.

答案解析

1.【解析】选B.样本的总数为20个,数据落在8.5~11.5的个数为8,故频率为

2.【解析】选C.总体密度曲线与频率分布折线图关系如下:当样本容量越大,组距越小时,频率分布折线图越接近总体密度曲线,但它永远达不到总体密度曲线.在总体密度曲线中,阴影部分的面积代表总体在(a,b)内取值的百分比,因而选C.

【误区警示】在频率分布直方图中,每一个小矩形的面积表示数据落在该组的频率,在总体密度曲线或总体分布折线图中,直线x=a,x=b,x轴与曲线或折线围成的面积也表示数据在(a,b)内的频率,即在(a,b)内取值的百分比,不要认为图形的平均高度是频率而误选D.

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。