您当前所在位置:首页 > 高考 > 高考数学 > 高考数学题型归纳

2017高考数学必考题型归纳

编辑:sx_shangjianm

2017-08-24

2017年高考如何复习一直都是考生们关注的话题,考生必须掌握一定的学习和复习方法才能在考试中取得好的成绩,下面是精品学习网编辑的2017高考数学必考题型,供参考,祝大家高考大捷~

2017高考数学必考题型归纳

高考数学三角函数题型

三角题一般在解答题的前两道题的位置上,主要考查三角恒等变换、三角函数的图像与性质、解三角形等有关内容.三角函数、平面向量和三角形中的正、余弦定理相互交汇,是高考中考查的热点。

纵观近几年的高考试题,许多新颖别致的三角解答题就是以此为出发点设计的,在这类问题中平面向量往往只是起到包装的作用,实际主要考查考生利用三角函数的性质、三角恒等变换与正、余弦定理解决问题的能力.解决这类问题的基本思路是脱掉向量的外衣,抓住问题的实质,灵活地实现问题的转化,选择合理的解决方法,在解题过程中要注意三角恒等变换公式的多样性和灵活性,注意题目中隐含的各种限制条件,做到推理严谨、计算准确、表达确切。

注意的问题

注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!)。

高考数学立体几何题型

常以柱体、锥体、组合体为载体全方位地考查立体几何中的重要内容,如线线、线面与面面的位置关系,线面角、二面角问题,距离问题等,既有计算又有证明,一题多问,递进排列,此类试题既可用传统方法解答,又可用空间向量法处理,有的题是两法兼用,可谓珠联璧合,相得益彰.究竟选用哪种方法,要由自己的长处和图形特点来确定.便于建立空间直角坐标系的,往往选用向量法,反之,选用传统方法.另外,动态探索性问题是近几年高考立体几何命题的新亮点,三视图的巧妙参与也是立体几何命题的新手法,要注意把握。

注意的问题

1.证明线面位置关系,一般不需要去建系,更简单.

2.求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系。

3.注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。

高考数学数列题型

数列题重点考查等差数列、等比数列、递推数列的综合应用,常与不等式、函数、导数等知识综合交汇,既考查分类、转化、化归、归纳、递推等数学思想方法,又考查综合运用知识进行运算、推理论证及解决问题的能力.近几年这类试题的位置有所前移,难度明显降低.

注意的问题

1.证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列。

2.最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证。

3.证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。