您当前所在位置:首页 > 高中 > 高二 > 高二数学 > 高二数学暑假作业

2016年精编高中高二暑假数学作业

编辑:

2016-08-06

11.若某一等差数列的首项为C-A,公差为m的展开式中的常数项,其中m是7777-15除以19的余数,则此数列前多少项的和最大?并求出这个最大值.

解:设该等差数列为{an},公差为d,前n项和为Sn.

由已知得又nN*,n=2,

C-A=C-A=C-A=-5×4=100,a1=100.

7777-15=(76+1)77-15

=7677+C·7676+…+C·76+1-15

=76(7676+C·7675+…+C)-14

=76M-14(MN*),

7777-15除以19的余数是5,即m=5.

m的展开式的通项是Tr+1=C·5-rr=(-1)rC5-2rxr-5(r=0,1,2,3,4,5),

令r-5=0,得r=3,代入上式,得T4=-4,即d=-4,从而等差数列的通项公式是an=100+(n-1)×(-4)=104-4n.

设其前k项之和最大,则解得k=25或k=26,故此数列的前25项之和与前26项之和相等且最大,

S25=S26=×25=×25=1 300.

12.从函数角度看,组合数C可看成是以r为自变量的函数f(r),其定义域是{r|rN,r≤n}.

(1)证明:f(r)=f(r-1);

(2)利用(1)的结论,证明:当n为偶数时,(a+b)n的展开式中最中间一项的二项式系数最大.

解:(1)证明:f(r)=C=,f(r-1)=C=,

f(r-1)=·=.

则f(r)=f(r-1)成立.

(2)设n=2k,f(r)=f(r-1),f(r-1)>0,=.

令f(r)≥f(r-1),则≥1,则r≤k+(等号不成立).

当r=1,2,…,k时,f(r)>f(r-1)成立.

反之,当r=k+1,k+2,…,2k时,f(r)

精品学习网为大家推荐的高二暑假数学作业,还满意吗?相信大家都会仔细阅读!

相关推荐:

16年数学高二年级暑假作业  

2016数学高二暑假作业测试题 

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。