您当前所在位置:首页 > 高中 > 高二 > 高二数学 > 高二数学学习方法

高二数学复习指导:判断充分与必要条件的常用方法

编辑:sx_zhaodan

2014-05-22

高二数学复习指导:判断充分与必要条件的常用方法

【摘要】高二数学复习指导:判断充分与必要条件的常用方法是精品学习网为您整理的最新考试资讯,请您详细阅读!

充分条件与必要条件是高中阶段非常重要的数学概念,它涉及知识范围广,综合性强,能与高中任何知识相结合,有一定的深度与难度,此类题目能有力地考查学生的逻辑思维能力.那么我们如何把握和解决此类问题呢?

一、 定义法

对于“?圯”,可以简单的记为箭头所指为必要,箭尾所指为充分.在解答此类题目时,利用定义直接推导,一定要抓住命题的条件和结论的四种关系的定义.

例1 已知p:-2

分析 条件p确定了m,n的范围,结论q则明确了方程的根的特点,且m,n作为系数,因此理应联想到根与系数的关系,然后再进一步化简.

解 设x1,x2是方程x2+mx+n=0的两个小于1的正根,即0

而对于满足条件p的m=-1,n=,方程x2-x+=0并无实根,所以pq.

综上,可知p是q的必要但不充分条件.

点评 解决条件判断问题时,务必分清谁是条件,谁是结论,然后既要尝试由条件能否推出结论,也要尝试由结论能否推出条件,这样才能明确做出充分性与必要性的判断.

二、 集合法

如果将命题p,q分别看作两个集合A与B,用集合意识解释条件,则有:①若A?哿B,则x∈A是x∈B的充分条件,x∈B是x∈A的必要条件;②若A?芴B,则x∈A是x∈B的充分不必要条件,x∈B是x∈A的必要不充分条件;③若A=B,则x∈A和x∈B互为充要条件;④若A?芫B且A?芸B,则x∈A和x∈B互为既不充分也不必要条件.

例2 设x,y∈R,则x2+y2<2是|x|+|y|≤的()条件,是|x|+|y|<2的()条件.

A. 充要条件 B. 既非充分也非必要条件

C. 必要不充分条件?摇D. 充分不必要条件

解 如右图所示,平面区域P={(x,y)|x2+y2<2}表示圆内部分(不含边界);平面区域Q={(x,y)||x|+|y|≤}表示小正方形内部分(含边界);平面区域M={(x,y)||x|+|y|<2}表示大正方形内部分(不含边界).

由于(,0)?埸P,但(,0)∈Q,则P?芸Q.又P?芫Q,于是x2+y2<2是|x|+|y|≤的既非充分也非必要条件,故选B.

同理P?芴M,于是x2+y2<2是|x|+|y|<2的充分不必要条件,故选D.

点评 由数想形,以形辅数,这种解法正是数形结合思想在解题中的有力体现.数形结合不仅能够拓宽我们的解题思路,而且也能够提高我们的解题能力.

三、 逆否法

利用互为逆否命题的等价关系,应用“正难则反”的数学思想,将判断“p?圯q”转化为判断“非q?圯非p”的真假.

例3 (1)判断p:x≠3且y≠2是q:x+y≠5的什么条件;

(2) 判断p:x≠3或y≠2是q:x+y≠5的什么条件.

解 (1)原命题等价于判断非q:x+y=5是非p:x=3或y=2的什么条件.

显然非p非q,非q非p,故p是q的既不充分也不必要条件.

(2) 原命题等价于判断非q:x+y=5是非p:x=3且y=2的什么条件.

因为非p?圯非q,但非q非p,故p是q的必要不充分条件.

点评 当命题含有否定词时,可考虑通过逆否命题等价转化判断.

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。