编辑:
2012-09-12
则P点的场强为:
例四:如图所示,
直线AB上均匀分布着密度为 ρ 的正电荷 (单位长度的带电量为 ρ ),P到AB的距离为R,求P点的场强。
分析与解:以P为为圆心做一个与直线AB相切的圆,认为圆弧上也均匀分布着线密度为ρ的正电荷,在AB上任取一微元ΔL(C点),圆弧上对应一微元ΔL′,令PC=r,则ΔL在P点处的场强为:
∵
∴
∵
∴
ΔL′在P处
产生的场强:
∴ Ei= Ei′
由此可见,直线AB上的电荷在P点的场强可由弧MQN进行等效替代,
设∠APB= α (由AB的长度可以算出)
在弧MQN上任取一小段ΔLi,它在P 点产生的电场为:
∴
,
∴ P点的场强:
∵ α=180° ∴
例五:一根无限长均匀带电细线弯成如图所示的平面图形,其中AB是半径为R的半圆弧,AA′平行于BB′,试求圆心处电场强度。(单位长度带电量为ρ)
分析与解:由上题的解答可得AA′相当于半个圆弧,BB′等效于半个圆弧,则整个图形可视为均匀带电的圆形。所以,圆心处的合电
场为0。
例六:如图所示,在半径为R的圆环上分布有不能移动的正电荷,总电量为Q,AB是它的一直径,如果要使AB上的场强处处为零,问圆环上的电荷应该如何分布?
分析与解:由对称性可知均匀分布的圆环圆心处的场强为0,由此可推广:均匀带电球壳其内部场强处处为0。由于要求直径AB上的场强为0,而圆环只对圆心具有中心对称性,故可知圆环上的电荷分布是不均匀的,可设想把原均匀分布在球面上的电荷,对应地压缩到以AB为直径的一圆环上,它们在直径AB上的场强则处处为0。
如图所示,圆环上任一点P处一
小段弧长ΔL,ΔL上分布的电量应等于半径为R,电量为Q的均匀带电球面上相应一小环带所带电的一半,
故有:
即圆环上电荷分布规律为:
点评:本题的求解关键在于将圆环上电荷的不均匀分布与球面上电荷的均匀分布相联系,而这种联系是建立在两者于直径上的场强等效而产生的,静电学的等效处理是一种很有效的解题方法。
标签:高三物理课件
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。