您当前所在位置:首页 > 高中 > 高一 > 高一数学 > 高一数学教案

高一数学教案:几类不同增长的函数模型

编辑:sx_xingt

2013-04-07

【摘要】欢迎来到精品学习网高一数学教案栏目,教案逻辑思路清晰,符合认识规律,培养学生自主学习习惯和能力。因此小编在此为您编辑了此文:“高一数学教案:几类不同增长的函数模型”希望能为您的提供到帮助。

本文题目:高一数学教案:几类不同增长的函数模型

学习目标

1. 结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型意义,理解它们的增长差异;

2. 借助信息技术,利用函数图象及数据表格,比较指数函数、对数函数以及幂函数的增长差异;

3. 恰当运用函数的三种表示法(解析式、图象、列表)并借助信息技术解决一些实际问题.

课前准备(预习教材P95~ P98,找出疑惑之处)

阅读:澳大利亚兔子数“爆炸”

有一大群喝水、嬉戏的兔子,但是这群兔子曾使澳大利亚伤透了脑筋.1859年,有人从欧洲带进澳洲几只兔子,由于澳洲有茂盛的牧草,而且没有兔子的天敌,兔子数量不断增加,不到100年,兔子们占领了整个澳大利亚,数量达到75亿只.可爱的兔子变得可恶起来,75亿只兔子吃掉了相当于75亿只羊所吃的牧草,草原的载畜率大大降低,而牛羊是澳大利亚的主要牲口.这使澳大利亚头痛不已,他们采用各种方法消灭这些兔子,直至二十世纪五十年代,科学家采用载液瘤病毒杀死了百分之九十的野兔,澳大利亚人才算松了一口气.

典型例题

例1假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下:

方案一:每天回报40元;

方案二:第一天回报10元,以后每天比前一天多回报10元;

方案三:第一天回报0 .4元,以后每天的回报比前一天翻一番.

请问,你会选择哪种投资方案?

反思:① 在本例中涉及哪些数量关系?如何用函数描述这些数量关系?

② 根据此例的数据,你对三种方案分别表现出的回报资金的增长差异有什么认识?借助计算器或计算机作出函数图象,并通过图象描述一下三种方案的特点.

例2某公司为了实现1000万元利润的目标,准备制定一个激励销售部门的奖励方案:在销售利润达到10万元时,按销售利润进行奖励,且奖金 (单位:万元)随销售利润 (单位:万元)的增加而增加但奖金不超过5万元,同时奖金不超过利润的25%.现有三个奖励模型:

; ; .

问:其中哪个模型能符合公司的要求?

反思:

① 此例涉及了哪几类函数模型?本例实质如何?

② 根据问题中的数据,如何判定所给的奖励模型是否符合公司要求?

练1. 如图,是某受污染的湖泊在自然净化过程中,某种有害物质的剩留量y与净化时间t(月)的近似函数关系: (t≥0,a>0且a≠1).有以下叙述

① 第4个月时,剩留量就会低于 ;

② 每月减少的有害物质量都相等;

③ 若剩留量为 所经过的时间分别是 ,则 .

其中所有正确的叙述是 .

练2. 经市场调查分析知,某地明年从年初开始的前 个月,对某种商品需求总量 (万件)近似地满足关系 .

写出明年第 个月这种商品需求量 (万件)与月份 的函数关系式.

课堂小结

1. 两类实际问题:投资回报、设计奖励方案;2. 几种函数模型:一次函数、对数函数、指数函数;3. 应用建模(函数模型);

知识拓展

解决应用题的一般程序:

① 审题:弄清题意,分清条件和结论,理顺数量关系;

② 建模:将文字语言转化为数学语言,利用数学知识,建立相应的数学模型;

③ 解模:求解数学模型,得出数学结论;

④ 还原:将用数学知识和方法得出的结论,还原为实际问题的意义.

学习评价

1. 某种细胞分裂时,由1个分裂成2个,2个分裂成4个,4个分裂成8个……,现有2个这样的细胞,分裂x次后得到的细胞个数y为( ).

A. B. y=2 C. y=2 D. y=2x

2. 某公司为了适应市场需求对产品结构做了重大调整,调整后初期利润增长迅速,后来增长越来越慢,若要建立恰当的函数模型来反映该公司调整后利润y与时间x的关系,可选用( ).

A. 一次函数 B. 二次函数

C. 指数型函数 D. 对数型函数

3. 一等腰三角形的周长是20,底边长y是关于腰长x的函数,它的解析式为( ).

A. y=20-2x (x≤10) B. y=20-2x (x<10) C. y=20-2x (5≤x≤10) D. y=20-2x(5

4. 某新品电视投放市场后第1个月销售100台,第2个月销售200台,第3个月销售400台,第4个月销售790台,则销量y与投放市场的月数x之间的关系可写成 .

5. 某种计算机病毒是通过电子邮件进行传播的,如果某台计算机感染上这种病毒,那么每轮病毒发作时,这台计算机都可能感染没被感染的20台计算机. 现在10台计算机在第1轮病毒发作时被感染,问在第5轮病毒发作时可能有 台计算机被感染. (用式子表示)

课后作业

1. 某服装个体户在进一批服装时,进价已按原价打了七五折,他打算对该服装定一新价标在价目卡上,并注明按该价20%销售. 这样,仍可获得25%的纯利. 求此个体户给这批服装定的新标价与原标价之间的函数关系.

2. 某书店对学生实行促销优惠购书活动,规定一次所购书的定价总额:①如不超过20元,则不予优惠;②如超过20元但不超过50元,则按实价给予9折优惠;③如超过50元,其中少于50元包括50元的部分按②给予优惠,超过50元的部分给予8折优惠.

(1)试求一次购书的实际付款y元与所购书的定价总额x元的函数关系;

(2)现在一学生两次去购书,分别付款16.8元和42.3元,若他一次购买同样的书,则应付款多少?比原来分两次购书优惠多少?

§3.2.1几类不同增长的函数模型(2)

学习目标

1. 结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型意义,理解它们的增长差异;

2. 借助信息技术,利用函数图象及数据表格,比较指数函数、对数函数以及幂函数的增长差异;

3. 恰当运用函数的三种表示法(解析式、图象、列表)并借助信息技术解决一些实际问题.

旧知提示 (预习教材P98~ P101,找出疑惑之处)

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。