编辑:
2014-06-06
二、解答题(本大题共6小题,共90分,解答时应写出文字说明、证明过程或演算骤.)
15.解不等式
16.为了了解《中华人民共和国道路交通安全法》在学生中的普及情况,调查部门对某校6名学生进行问卷调查,6人得分情况如下:5,6,7,8,9,10.把这6名学生的得分看成一个总体.
(1)求该总体的平均数;
(2)用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本.求该样本平均数与总体平均数之差的绝对值不超过0.5的概率.
17.设 的三个内角 所对的边分别为 ,
且满足 .
(Ⅰ)求角 的大小;
(Ⅱ)若 ,试求 的最小值.
18. 已知函数 ( ).
(Ⅰ)当 时,求函数 的最小正周期和图象的对称轴方程;
(Ⅱ)当 时,在 的条件下,求 的值.
19. 某市环保研究所对市中心每天环境污染情况进行调查研究后,发现一天中环境综合污染指数 与时间x(小时)的关系为 ,其中a与气象有关的参数,且 ,若用每天 的最大值为当天的综合污染指数,并记作 .
(1)令 ,求t的取值范围;
(2)求函数 ;
(3)市政府规定,每天的综合污染指数不得超过2,试问目前市中心的综合污染指数是多少?是否超标?
20. 已知数列 ,
设 ,数列 。
(1)求证: 是等差数列;
(2)求数列 的前n项和Sn;
(3)若 一切正整数n恒成立,
求实数m的取值范围。
精品学习网高中频道为大家整理了高中2014年高一第二学期数学期末考试试卷
相关推荐
标签:高一数学试题
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。