您当前所在位置:首页 > 高中 > 高一 > 高一数学 > 高一数学试题

2017高一必修一数学函数的应用测试题及答案

编辑:

2016-10-11

【解析】 (1)原式

=25912+(lg5)0+343-13

=53+1+43=4.

(2)由方程log3(6x-9)=3得

6x-9=33=27,∴6x=36=62,∴x=2.

经检验,x=2是原方程的解.

20.(本小题满分12分)有一批影碟机(VCD)原销售价为每台800元,在甲、乙两家商场均有销售,甲商场用下面的方法促销:买一台单价为780元,买两台单价为760元,依次类推,每多买一台单价均减少20元,但每台最低不低于440元;乙商场一律按原价的75%销售,某单位需购买一批此类影碟机,问去哪家商场购买花费较少?

【解析】 设购买x台,甲、乙两商场的差价为y,则去甲商场购买共花费(800-20x)x,由题意800-20x≥440.

∴1≤x≤18(x∈N).

去乙商场花费800×75%x(x∈N*).

∴当1≤x≤18(x∈N*)时

y=(800-20x)x-600x=200x-20x2,

当x>18(x∈N*)时,y=440x-600x=-160x,

则当y>0时,1≤x≤10;

当y=0时,x=10;

当y<0时,x>10(x∈N).

综上可知,若买少于10台,去乙商场花费较少;若买10台,甲、乙商场花费相同;若买超过10台,则去甲商场花费较少.

21.(本小题满分12分)已知函数f(x)=lg(1+x)-lg(1-x).

(1)求函数f(x)的定义域;

(2)判断函数f(x)的奇偶性;

【解析】 (1)由1+x>0,1-x>0,得-1

∴函数f(x)的定义域为(-1,1).

(2)定义域关于原点对称,对于任意的x∈(-1,1),

有-x∈(-1,1),

f(-x)=lg(1-x)-lg(1+x)=-f(x)

∴f(x)为奇函数.

22.(本小题满分14分)设a>0,f(x)=exa+aex是R上的偶函数.

(1)求a的值;

(2)证明:f(x)在(0,+∞)上是增函数.

【解析】 (1)解:∵f(x)=exa+aex是R上的偶函数,

∴f(x)-f(-x)=0.

∴exa+aex-e-xa-ae-x=0,

即1a-aex+a-1ae-x=0

1a-a(ex-e-x)=0.

由于ex-e-x不可能恒为0,

∴当1a-a=0时,式子恒成立.

又a>0,∴a=1.

(2)证明:∵由(1)知f(x)=ex+1ex,

在(0,+∞)上任取x1

f(x1)-f(x2)=ex1+1ex1-ex2-1ex2

=(ex1-ex2)+(ex2-ex1)•1ex1+x2.

∵e>1,∴0

∴ex1+x2>1,(ex1-ex2)1-1ex1+x2<0,

∴f(x1)-f(x2)<0,即f(x1)

∴f(x)在(0,+∞)上是增函数.

精品小编为大家提供的高一必修一数学函数的应用测试题,大家仔细阅读了吗?最后祝同学们学习进步。

相关推荐:

高一上学期9月月考数学试卷(2016—2017)

高一数学上学期第一次月考题2016  

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。