您当前所在位置:首页 > 高中 > 高一 > 高一数学 > 高一数学专项练习

北师大版高一数学下册《圆与圆的方程》随堂练习

编辑:

2016-05-16

二、填空题(本大题共4小题,每小题5分,共20分,请将答案填在题中的横线上。)

13.(2010•湖南长沙一中)已知直线l1:ax+y+2a=0,直线l2:ax-y+3a=0.若l1⊥l2,则a=________.

答案:±1

解析:∵l1⊥l2,∴kl1•kl2=-1,即(-a)•a=-1,∴a=±1.

14.点P(a,3)到直线4x-3y+1=0的距离等于4,且在不等式2x+y<4表示的平面区域内,则P点的坐标为__________.

答案:(-3,3)

解析:因|4a-9+1|5=4,∴a=7,a=-3.

当a=7时,不满足2x+y<4(舍去),∴a=-3.

15.(2009•朝阳4月,12)已知动直线l平分圆C:(x-2)2+(y-1)2=1,则直线l与圆:x=3cosθ,y=3sinθ,(θ为参数)的位置关系是________.

答案:相交

解析:动直线l平分圆C:(x-2)2+(y-1)2=1,即圆心(2,1)在直线上,又圆O:x=3cosθ,y=3sinθ,即x2+y2=9,且22+12<9,(2,1)在圆O内,则直线l与圆O:

x=3cosθ,y=3sinθ,(θ为参数)的位置关系是相交,故填相交.

16.(2009•山东济南一模)若直线y=kx-2与圆x2+y2=2相交于P、Q两点,且∠POQ=120°(其中O为原点),k的值为________.

答案:±3

解析:由图可知,点P的坐标为(0,-2),

∠OPQ=30°,∴直线y=kx-2的倾斜角为60°或120°,∴k=±3.

三、解答题(本大题共6小题,共70分,解答应写出文字说明、演算步骤或证明过程。)

17.(本小题满分10分)求经过7x+8y=38及3x-2y=0的交点且在两坐标轴上截得的截距相等的直线方程.

解析:易得交点坐标为(2,3)

设所求直线为7x+8y-38+λ(3x-2y)=0,

即(7+3λ)x+(8-2λ)y-38=0,

令x=0,y=388-2λ,

令y=0,x=387+3λ,

由已知,388-2λ=387+3λ,

∴λ=15,即所求直线方程为x+y-5=0.

又直线方程不含直线3x-2y=0,而当直线过原点时,在两轴上的截距也相等,故3x-2y=0亦为所求.

18.(本小题满分12分)已知直线l经过点P(3,1),且被两平行直线l1;x+y+1=0和l2:x+y+6=0截得的线段之长为5,求直线l的方程.

分析一:如图,利用点斜式方程,分别与l1、l2联立,求得两交点A、B的坐标(用k表示),再利用|AB|=5可求出k的值,从而求得l的方程.

解析:解法一:若直线l的斜率不存在,则直线l的方程为x=3,此时与l1、l2的交点分别为A′(3,-4)或B′(3,-9),截得的线段AB的长|AB|=|-4+9|=5,符合题意.

若直线l的斜率存在,则设直线l的方程为y=k(x-3)+1.

解方程组y=k(x-3)+1,x+y+1=0,得

A(3k-2k+1,-4k-1k+1).

解方程组y=k(x-3)+1,x+y+6=0,得

B(3k-7k+1,-9k-1k+1).

由|AB|=5.

得(3k-2k+1-3k-7k+1)2+(-4k-1k+1+9k-1k+1)2=52.

解之,得k=0,直线方程为y=1.

综上可知,所求l的方程为x=3或y=1.

分析二:用l1、l2之间的距离及l与l1夹角的关系求解.

解法二:由题意,直线l1、l2之间的距离为d=|1-6|2=522,且直线L被平行直线l1、l2所截得的线段AB的长为5,设直线l与直线l1的夹角为θ,则sinθ=5225=22,故θ=45°.

由直线l1:x+y+1=0的倾斜角为135°,知直线l的倾斜角为0°或90°,又由直线l过点P(3,1),故直线l的方程为:

x=3或y=1.

分析三:设直线l1、l2与l分别相交于A(x1,y1),B(x2,y2),则通过求出y1-y2,x1-x2的值确定直线l的斜率(或倾斜角),从而求得直线l的方程.

解法三:设直线l与l1、l2分别相交A(x1,y1)、B(x2,y2),则x1+y1+1=0,x2+y2+6=0.

两式相减,得(x1-x2)+(y1-y2)=5.      ①

又(x1-x2)2+(y1-y2)2=25.        ②

联立①、②可得

x1-x2=5,y1-y2=0,或x1-x2=0,y1-y2=5.

由上可知,直线l的倾斜角分别为0°或90°.

故所求的直线方程为x=3或y=1.

19.(本小题满分12分)设圆上的点A(2,3)关于直线x+2y=0的对称点仍在圆上,且与直线x-y+1=0相交的弦长为22,求圆的方程.

解析:设所求圆的圆心为(a,b),半径为r,

∵点A(2,3)关于直线x+2y=0的对称点A′仍在这个圆上,

∴圆心(a,b)在直线x+2y=0上,

∴a+2b=0,         ①

(2-a)2+(3-b)2=r2.        ②

又直线x-y+1=0截圆所得的弦长为22,

∴r2-(a-b+12)2=(2)2       ③

解由方程①、②、③组成的方程组得:

b=-3,a=6,r2=52.或b=-7,a=14,r2=244,

∴所求圆的方程为

(x-6)2+(y+3)2=52或(x-14)2+(y+7)2=244.

精品学习网为大家推荐的圆与圆的方程随堂练习就到这里了,希望大家在新的学期里生活愉快,学习进步。

相关推荐:

北师大版高一下册数学《直线与直线的方程》练习题及答案

高一下册数学圆的方程课堂练习题2016  

 

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。