您当前所在位置:首页 > 高中 > 高中数学学习 > 数学家

数学家费尔马的故事

编辑:sx_xingt

2013-04-09

【摘要】这里是精品学习网数学家栏目,对于数学知识我们在学校生活中便可学习。但是这些数学知识的背后,有很多不为人们所知道的数学家们。所以小编在此为您编辑此文:“数学家费尔马的故事”希望可以丰富您的学习生活,对您可以有所帮助。

本文题目:数学家费尔马的故事

在当今日益专业话的分工下,无论是竞技项目还是专业领域,业余爱好者也许永远达不到专业人员的水平。就拿围棋为例,每年中国的专业vs业余最高对抗赛,尽管专业棋手让两个子,可是业余棋手还是几乎全军覆没,象棋领域也大概如此。不过韩国围棋高手刘昌赫曾经是业余棋手,但最后达到了专业超一流棋手的水平。象棋全国冠军陶汉明曾经是业余棋手起家,曾经取得过全国亚军的金波也是业余棋手。不过这些只是极端个别的例子。

在数学发展起步时期,业余数学家取得了骄人的成绩。依我看,费尔马(Femart)应该是自古以来没有与之相比的,估计今后也不会有超越他的业余数学家了。费马(1601年~1665年)是一位具有传奇色彩的业余数学家,他最初学习法律并以当律师谋生,后来成为议会议员,数学只不过是他的业余爱好,只能利用闲暇来研究。虽然年近30才认真注意数学,但费马对数论和微积分做出了第一流的贡献。费马提出了光线沿最快的路径行进的原理,进而揭示了隐藏在光的折射定律后面的自然界的秘密,原来只有服从折射定律,才能保证光线从一点到达另一点用的时间最短。费马在数论上为我们留下了大量的定理和猜想,其中相当一部分未给出证明。挑选这些‘定理'中最有趣的两个给大家介绍一下。

费尔马猜测,形如 2^(2^n)+1(这里符号‘^'表示幂,如4^2=16)的数都是素数,这类数成为费尔马数。对于n=0,1,2,3,4,经过验证果然如此。不过对于n=5,欧拉用心算得出:2^(2^5)+1=2^32+1=641×6700417,不是素数。有趣的对于其它的n,至今没发现一个费尔马数是素数。

下面说说著名的‘费马大定理':那是费马去世后,人们整理他留下的笔记发现的。费马热衷于不定方程的研究。我想能够坚持读本文的读者应该都知道勾股定理,并知道3^2+4^2=5^2,5^2+12^2=13^2,等等,这类数叫做勾股数(国际上叫毕达哥拉斯数),这类数究竟是怎样构造出来的,古希腊时期已经给出了完整的答案:如果x是偶数,且x和y没有公因数,那么必然有有一奇一偶两个正整数a,b,使得:x=2ab,y=a^2-b^2,z=a^2+b^2,其中a和b没有公因数。费尔马在阅读一本书叫做【丢番图方程】里面关于勾股数这部分时,在旁边写到:把一个整数的立方写成两个整数的立方之和,把一个整数的四次方写成两个整数的四次方之和,等等,都是不可能的。我已经找到了绝妙的证明,可惜这本数旁边的空白处太少了,我写不下来。

标签:数学家

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。