编辑:
2014-06-26
「在一个直角三角形,斜边的平方是两股平方和。」这个定理
中国人(周朝的商高)和巴比伦人早在毕氏提出前一千年就在使用,
但一般人仍将定理归属於毕达歌拉斯,是因為他证明了定理的普遍性。
毕氏认為寻找证明就是寻找认识,而这种认识比任何训练所累积的经
验都不容置疑,数学逻辑是真理的仲裁者。
毕氏很少公开露面,他虽然向学生教授数学和哲学,但绝不允
许学生将之是外传,也因為兄弟会隐瞒数学发现,渐渐引起居民的
畏惧、妄想和猜忌。后来因学派介入了政治事件,与学校所在地科落顿
行政当局发生衝突,终於诱使居民毁了这学派,80岁时毕氏在一次夜
间骚乱中被杀,而避居国外的信徒,继续传播他们的数学真理。
对毕达歌拉斯而言,数学之美在於有理数能解释一切自然现象。
这种起指导作用的哲学观使毕氏对无理数的存在视而不见,甚至
导致他一个学生被处死。这位学生名叫希帕索斯,出於无聊,他
试图找出根号2的等价分数,最终他认识到根本不存在这个分数,
也就是说根号2是无理数,希帕索斯对这发现,喜出望外,但是
他的老师毕氏却不悦。因為毕氏已经用有理数解释了天地万物,
无理数的存在会引起对他信念的怀疑。希帕索斯经洞察力获致的
成果一定经过了一段时间的讨论和深思熟虑,毕氏本应接受这新
数源。然而,毕氏始终不愿承认自己的错误,却又无法经由逻辑
推理推翻希帕索斯的论证。使他终身蒙羞的是,他竟然判决将
希帕索斯淹死。这是希腊数学的最大悲剧,只有在他死后无理数
才得以安全的被讨论著。后来,欧几里德以反证法证明根号2是
无理数。
总结:数学家小故事:毕达哥拉斯就为大家介绍到这儿了,希望小编的整理可以帮助到大家,祝大家学习进步。
小编推荐:
标签:数学家
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。