编辑:
2014-05-05
函数定义域值域振幅周期频率相位初相图象
[-A,A]A
五点法
10、解三角形:(1)、三角形的面积公式:
(2)正弦定理:
(3)、余弦定理:
求角:
第五章、平面向量 1、坐标运算:设 ,则
数与向量的积:λ ,数量积:
(2)、设A、B两点的坐标分别为(x1,y1),(x2,y2),则 .(终点减起点)
;向量 的模| |: ;
(3)、平面向量的数量积: , 注意: , ,
(4)、向量 的夹角 ,则 ,
2、重要结论:(1)、两个向量平行: ,
(2)、两个非零向量垂直 ,
(3)、P分有向线段 的:设P(x,y) ,P1(x1,y1) ,P2(x2,y2) ,且 ,
则定比分点坐标公式 , 中点坐标公式
第六章:不等式
1、均值不等式:(1)、 ( )
(2)、a>0,b>0; 或 一正、二定、三相等
2、解指数、对数不等式的方法:同底法,同时对数的真数大于0;
第七章:直线和圆的方程
1、斜 率: , ;直线上两点 ,则斜率为
2、直线方程:(1)、点斜式: ;(2)、斜截式: ;
(3)、一般式: (A、B不同时为0) 斜率 , 轴截距为
3、两直线的位置关系(1)、平行: 时 , ;
垂直: ;
(2)、到角范围: 到角公式 : 都存在,
夹角范围: 夹角公式: 都存在,
(3)、点到直线的距离公式 (直线方程必须化为一般式)
6、圆的方程:(1)、圆的标准方程 ,圆心为 ,半径为
(2)圆的一般方程 (配方: )
时,表示一个以 为圆心,半径为 的圆;
第八章:圆锥曲线 1、椭圆标准方程: ,
半焦距: , 离心率的范围: ,准线方程: ,参数方程:
2、双曲线标准方程: ,半焦距: ,离心率的范围:
准线方程: ,渐近线方程用 求得: ,等轴双曲线离心率
3、抛物线: 是焦点到准线的距离 ,离心率:
:准线方程 焦点坐标 ; :准线方程 焦点坐标
:准线方程 焦点坐标 ; :准线方程 焦点坐标
第九章 直线 平面 简单的几何体
1、长方体的对角线长 ;正方体的对角线长
2、两点的球面距离求法:球心角的弧度数乘以球半径,即 ;
3、球的体积公式: ,球的表面积公式:
标签:数学
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。