您当前所在位置:首页 > 高中 > 教案 > 高一数学教案

高一数学教案:四种命题教案

编辑:

2014-06-18

教师活动:

【导入】同学们对反证法这种间接证法不像学过的直接证法如综合法、分析法那样熟悉,感到抽象、难懂,让我们举出一例对反证法加以介绍.

我们年级有367名学生,请你证明这些学生中至少有两个学生在同一天过生日.

这个问题若用直接证法来解决是有困难的,我们可以运用反证法.

运用反证法证明这个问题首先是根据“至少有两个学生在同一天过生日”的反面是“任何两个学生都不在同一天过生日”,也就是反设“假设任何两个学生都不在同一天过生日”,从这个反设出发就会推出这

367人就会有不同的367天过生日,这就出现了与一年只有365天(闰年366天)的矛盾.产生这个矛盾的来源是由于开始的反设,因此反设不成立,这样得出了“至少有两个学生在同一天过生日”的结论.

设计意图:

以生活中的实际例子拉近学生与反证法的距离,激发学生的学习兴趣.

【板书】反证法证题的步骤:

1.反设;2.归谬;3.结论

【例】用反证法证明:圆的两条不是直径的相交弦不能互相平分.

已知:如图,在⊙O中,弦AB、CD相交于P点,且AB、CD不是直径.

求证:弦AB、CD不被P点平分.



【设问】用反证法证明这道题如何进行反设?怎样进行归谬?

【引导讨论】“弦AB、CD不被P点平分”的反面是“弦AB、CD被P点平分”,因而反设是“假设弦AB、CD被P点平分”.

学生活动:

思考后分组讨论,互相补充.

设计意图:

在关键处设问,激励学生探究精神,提高运用反证法的能力.

教师活动:



两条直线与OP都垂直,与垂线的性质矛盾.

结论是“弦AB、CD不被P点平分”成立.

这道题用反证法证明还有一个方法.



连结AD、BD、BC、AC·


免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。

精品学习网高中教案频道为考生提供最新最权威的高一数学教案大全、高一数学教案指导、数学教案素材以及数学教案模板等相关教案考试内容。