您当前所在位置:首页 > 高中 > 教案 > 高一数学教案

高一数学圆的方程教案检查总结范文

编辑:

2016-03-28

1、     写出下列各圆的标准方程:[多媒体演示]

① 圆心在原点,半径是3   :________________________

② 圆心在点C(3,4),半径是:______________________

③ 经过点P(5,1),圆心在点C(8,-3):_______________________

2、  变式题[多媒体演示]

①     求以C(1,3)为圆心,并且和直线3x-4y-7=0相切的圆的方程。

答案:(x-1)2 + (y-3)2 =

② 已知圆的方程是 (x-a)2 +y2 = a2 ,写出圆心坐标和半径。

答案: C(a,0),  r=|a|

Ⅲ.例题分析、巩固应用

师:下面我们通过例题来看看圆的标准方程的应用.

[例1] 已知圆的方程是 x2+y2=17,求经过圆上一点P(,)的切线的方程。

师:你打算怎样求过P点的切线方程?                        

生:要求经过一点的直线方程,可利用直线的点斜式来求。

师: 斜率怎样求?                                             

生:。。。。。。

师:已知条件有哪些?能利用吗?不妨结合图形来看看      

生:切线与过切点的半径垂直,故斜率互为负倒数

半径OP的斜率 K1=, 所以切线的斜率 K=-=-

所以所求切线方程:y-= -(x-)

即:x+y=17   (教师板书)

师:对照圆的方程x2+y2=17和经过点P(,)的切线方程x+y=17,你能作出怎样的猜想?

生:。。。。。。

师:由x2+y2=17怎样写出切线方程x+y=17,与已知点P(,)有何关系?

(若看不出来,再看一例)

[例1/]  圆的方程是x2+y2=13,求过此圆上一点(2,3)的切线方程。

答案:2x+3y=13  即:2x+3y-13=0

师:发现规律了吗?(学生纷纷举手回答)

生:分别用切点的横坐标和纵坐标代替圆方程中的一个x和一个y,便得到了切线方程。

师:若将已知条件中圆半径改为r,点改为圆上任一点(xo,yo),则结论将会发生怎样的变化?大胆地猜一猜!

生:xox+yoy=r2.

师:这个猜想对不对?若对,可否给出证明?

生:。。。。。。

[例2]已知圆的方程是 x2+y2=r2,求经过圆上一点P(xo,yo)的切线的方程。

解:如图(上一页),因为切线与过切点的半径垂直,故半径OP的斜率与切线的斜率互为负倒数

∵半径OP的斜率 K1=,∴切线的斜率 K=-=-

∴所求切线方程:y-yo= -(x-xo)

即:xox+yoy=xo2+yo2   亦即:xox+yoy=r2. (教师板书)

当点P在坐标轴上时,可以验证上面方程同样适用。

归纳总结:圆的方程可看成 x.x+y.y=r2,将其中一个x、y用切点的坐标xo、yo 替换,可得到切线方程

[例3]右图为某圆拱桥的一孔圆拱的示意图.该圆拱跨度AB=20M,拱高OP=4M,在建造时每隔4M需用一个支柱支撑,求支柱A2P2的长度。(精确到0.01M)

引导学生分析,共同完成解答。

师生分析:①建系; ②设圆的标准方程(待定系数);③求系数(求出圆的标准方程);④利用方程求A2P2的长度。

Ⅳ.课堂练习、课时小结

课本P77练习2,3

师:通过本节学习,要求大家掌握圆的标准方程,理解并掌握切线方程的探求过程和方法,能运用圆的方程解决实际问题.

Ⅴ.问题延伸、课后作业

(一)若P(xo,yo)在圆(x-a)2+(y-b)2= r2上时,試求过P点的圆的切线方程。

课本P81习题7.7 : 1,2,3,4

精品小编为大家提供的高一数学圆的方程教案检查总结,大家仔细阅读了吗?最后祝同学们学习进步。

相关推荐:

人教版数学高一下册圆的方程教案模板精选

高一数学圆的方程教案设计2016

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。

精品学习网高中教案频道为考生提供最新最权威的高一数学教案大全、高一数学教案指导、数学教案素材以及数学教案模板等相关教案考试内容。