您当前所在位置:首页 > 高中 > 教案 > 高二数学教案

高中二年级数学教案设计:不等式的证明

编辑:sx_gaohm

2015-08-31

数学是研究现实世界空间形式和数量关系的一门科学。精品小编准备了高中二年级数学教案设计,具体请看以下内容。

教学目标

1.掌握分析法证明不等式;

2.理解分析法实质——执果索因;

3.提高证明不等式证法灵活性.

教学重点  分析法

教学难点 分析法实质的理解

教学方法 启发引导式

教学活动

(一)导入新课

(教师活动)教师提出问题,待回答和思考后点评.

(活动)回答和思考教师提出的问题.

[问题1]我们已经学习了哪几种不等式的证明方法?什么是比较法?什么是综合法?

[问题 2]能否用比较法或综合法证明不等式:

[点评]在证明不等式时,若用比较法或综合法难以下手时,可采用另一种证明方法:分析法.(板书课题)

设计意图:复习已学证明不等式的方法.指出用比较法和综合法证明不等式的不足之处,

激发学习新的证明不等式知识的积极性,导入本节课学习内容:用分析法证明不等式.

(二)新课讲授

【尝试探索、建立新知】

(教师活动)教师讲解综合法证明不等式的逻辑关系,然后提出问题供学生研究,并点评.帮助建立分析法证明不等式的知识体系.投影分析法证明不等式的概念.

(活动)与教师一道分析综合法的逻辑关系,在教师启发、引导下尝试探索,构建新知.

[讲解]综合法证明不等式的逻辑关系:以已知条件中的不等式或基本不等式作为结论,逐步寻找它成立的必要条件,直到必要条件就是要证明的不等式.

[问题1]我们能不能用同样的思考问题的方式,把要证明的不等式作为结论,逐步去寻找它成立的充分条件呢?

[问题2]当我们寻找的充分条件已经是成立的不等式时,说明了什么呢?

[问题3]说明要证明的不等式成立的理由是什么呢?

[点评]从要证明的结论入手,逆求使它成立的充分条件,直到充分条件显然成立为止,从而得出要证明的结论成立.就是分析法的逻辑关系.

[投影]分析法证明不等式的概念.(见课本)

设计意图:对比综合法的逻辑关系,教师层层设置问题,激发积极思考、研究.建立新的知识;分析法证明不等式.培养学习创新意识.

【例题示范、学会应用】

(教师活动)教师板书或投影例题,引导研究问题,构思证题方法,学会用分析法证明不等式,并点评用分析法证明不等式必须注意的问题.

(学生活动)在教师引导下,研究问题,与教师一道完成问题的论证.

例1 求证

[分析]此题用比较法和综合法都很难入手,应考虑用分析法.

证明:(见课本)

[点评]证明某些含有根式的不等式时,用综合法比较困难.此例中,我们很难想到从“ ”入手,因此,在不等式的证明中,分析法占有重要的位置,我们常用分析法探索证明途径,然后用综合法的形式写出证明过程,这是解决问题的一种重要思维方法,事实上,有些综合法的表述正是建立在分析法思索的基础上,分析法的优越性正体现在此.

例2 已知: ,求证: (用分析法)请思考下列证法有没有错误?若有错误,错在何处?

[投影]证法一:因为 ,所以 、去分母,化为 ,就是 .由已知 成立,所以求证的不等式成立.

证法二:欲证 ,因为

只需证 ,

即证 ,

即证

因为 成立,所以 成立.

(证法二正确,证法一错误.错误的原因是:虽然是从结论出发,但不是逐步逆战结论成立的充分条件,事实上找到明显成立的不等式是结论的必要条件,所以不符合分析法的逻辑原理,犯了逻辑上的错误.)

[点评]①用分析法证明不等式的逻辑关系是:

(结论)(步步寻找不等式成立的充分条件)(结论)

分析法是“执果索因”,它与综合法的证明过程(由因导果)恰恰相反.②用分析法证明时要注意书写格式.分析法论证“若a则b”这个命题的书写格式是:

要证命题b为真,

只需证明 为真,从而有……

这只需证明 为真,从而又有……

……

这只需证明a为真.

而已知a为真,故命题b必为真.

要理解上述格式中蕴含的逻辑关系.

[投影] 例3  证明:通过水管放水,当流速相同时,如果水管截面(指横截面,下同)的周长相等,那么截面是圆的水管比截面是正方形的水管流量大.

[分析]设未知数,列方程,因为当水的流速相同时,水管的流量取决于水管截面面积的大小,设截面的周长为 ,则周长为的圆的半径为 ,截面积为 ;周长为 的正方形边长为 ,截面积为 ,所以本题只需证明:

证明:(见课本)

设计意图:理解分析法与综合法的内在联系,说明分析法在证明不等式中的重要地位.掌

握分析法证明不等式,特别重视分析法证题格式及格式中蕴含的逻辑关系.灵活掌握分析法的应用,培养应用知识解决实际问题的能力.

【课堂练习】

(教师活动)打出字幕(练习),请甲、乙两位同学板演,巡视的解题情况,对正确的证法给予肯定,对偏差及时纠正.点评练习中存在的问题.

(活动)在笔记本上完成练习,甲、乙两位同学板演.

【字幕】练习1.求证

2.求证:

设计意图:掌握用分析法证明不等式,反馈课堂效果,调节课堂教学.

【分析归纳、小结解法】

(教师活动)分析归纳例题和练习的解题过程,小给用分析法证明不等式的解题方法.

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。