您当前所在位置:首页 > 高中 > 教案 > 高二数学教案

高二年级数学下册任意的三角函数教案2016

编辑:

2016-02-25

(四)教学过程设计

在设计教学过程时,如下问题需要予以关注:

强调教学过程的内在逻辑线索;

要给出学生思考和操作的具体描述;

要突出核心概念的思维建构和技能操作过程,突出思想方法的领悟过程分析;

以“问题串”方式呈现为主,应当认真思考每一问题的设计意图、师生活动预设,以及需要概括的概念要点、思想方法,需要进行的技能训练,需要培养的能力,等。

另外,要根据内容特点设计教学过程,如基于问题解决的设计,讲授式教学设计,自主探究式教学设计,合作交流式教学设计,等。

教学过程设计

1.复习提问

请回答下列问题:

(1)前面学习了任意角,你能说说任意角概念与平面几何中的角的概念有什么不同吗?

(2)引进象限角概念有什么好处?

(3)在度量角的大小时,弧度制与角度制有什么区别?

(4)我们是怎样简化弧度制的度量单位的?

(设计意图:从为学习三角函数概念服务的角度复习;关注的是思想方法。)

2.先行组织者

 我们知道,函数是描述客观世界变化规律的重要数学模型。例如指数函数描述了“指数爆炸”,对数函数描述了“对数增长”等。圆周运动是一种重要的运动,其中最基本的是一个质点绕点O 做匀速圆周运动,其变化规律该用什么函数模型描述呢?“任意角的三角函数”就是一个刻画这种“周而复始”的变化规律的函数模型。

(设计意图:解决“学习的必要性”问题,明确要研究的问题。)

3.概念教学过程

问题1 对于三角函数我们并不陌生,初中学过锐角三角函数,你能说说它的自变量和对应关系各是什么吗?任意画一个锐角 α,你能借助三角板,根据锐角三角函数的定义找出sinα的值吗?

(设计意图:从函数角度重新认识锐角三角函数定义,突出“与点的位置无关”。)

问题2  你能借助象限角的概念,用直角坐标系中点的坐标表示锐角三角函数吗?

(设计意图:比值“坐标化”。)

问题3  上述表达式比较复杂,你能设法将它化简吗?

(设计意图:为“单位圆法”作铺垫。学生答出“取点P(x,y)使x2+y2=1”后追问“为什么可以这样做?)

教师讲授:类比上述做法,设任意角α的终边与单位圆交点为P(x,y),定义正弦函数为y=sinα,余弦函数为x=cosα。

(设计意图:“定义”是一种“规定”;把精力放在定义合理性的理解上。)

问题4  你能说明上述定义符合函数定义的要求吗?

(设计意图:让学生用函数的三要素说明定义的合理性,以此进一步明确三角函数的对应法则、定义域和值域。)

例1  分别求自变量π/2,π,- π/3所对应的正弦函数值和余弦函数值。

(设计意图:让学生熟悉定义,从中概括出用定义解题的步骤。)

例2  角α的终边过P(1/2, -    /2),求它的三角函数值。

4.概念的“精致”

通过概念的“精致”,引导学生认识概念的细节,并将新概念纳入到概念系统中去,使学生全面理解三角函数概念。这里包括如下内容:

三角函数值的符号问题;

终边与坐标轴重合时的三角函数值;

终边相同的角的同名三角函数值;

与锐角三角函数的比较:因袭与扩张;

从“形”的角度看三角函数——三角函数线,联系的观点;

终边上任意一点的坐标表示的三角函数;

还可以引导学生思考三角函数的“多元联系表示”,例如,把实数轴想象为一条柔软的细线,原点固定在单位点A(1,0),数轴的正半轴逆时针缠绕在单位圆上,负半轴顺时针缠绕在单位圆上,那么数轴上的任意一个实数(点)t 被缠绕到单位圆上的点   P(cost,sint).

5.课堂小结

(1)问题的提出——自然、水到渠成,思想高度——函数模型;

(2)研究的思想方法——与锐角三角函数的因袭与扩张的关系,化归为最简单也是最本质的模型,数形结合;

(3)归纳概括概念的内涵,明确自变量、对应法则、因变量;

(4)用概念作判断的步骤、注意事项等。

(五)目标检测设计

一般采用习题、练习的方式进行检测。要明确每一个(组)习题或练习的设计目的,加强检测的针对性、有效性。练习应当由简单到复杂、由单一到综合,循序渐进地进行。当前,要特别注意摒除“一步到位”的做法。过早给综合题、难题有害无益,基础不够的题目更是贻害无穷。题目出不好、练习安排不合理是老师专业素养低的表现之一。

本课习题只要完成教科书上的相关题目即可,这里从略。

高中是人生中的关键阶段,大家一定要好好把握高中,编辑老师为大家整理的高二年级数学下册任意的三角函数教案,希望大家喜欢。

相关推荐:

2015—2016高二数学均匀随机数的产生教案

2015—2016学年高二数学概率的意义教案

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。