编辑:sx_haody
2016-03-09
教案是上课的重要依据,精品小编准备了2016高二数学平面向量的实际背景及基本概念教案,希望你喜欢。
教学目的:
1.掌握平面向量的数量积及其几何意义;
2.掌握平面向量数量积的重要性质及运算律;
3.了解用平面向量的数量积可以处理垂直的问题;
4.掌握向量垂直的条件.
教学重点:平面向量的数量积定义
教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用
教学过程:
一、复习引入:
(1)两个非零向量夹角的概念:
已知非零向量a与b,作=a,=b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.
说明:(1)当θ=0时,a与b同向;
(2)当θ=π时,a与b反向;
(3)当θ=时,a与b垂直,记a⊥b;
(4)注意在两向量的夹角定义,两向量必须是同起点的.范围0?≤?≤180?
(2)两向量共线的判定
(3)练习
1.若a=(2,3),b=(4,-1+y),且a∥b,则y=( C )
A.6 B.5 C.7 D.8
2.若A(x,-1),B(1,3),C(2,5)三点共线,则x的值为( B )
A.-3 B.-1 C.1 D.3
(4)力做的功:W = |F|?|s|cos?,?是F与s的夹角.
二、讲解新课:
1.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,
则数量|a||b|cos?叫a与b的数量积,记作a?b,即有a?b = |a||b|cos?,(0≤θ≤π).
并规定0向量与任何向量的数量积为0.
?探究:1、向量数量积是一个向量还是一个数量?它的符号什么时候为正?什么时候为负?
2、两个向量的数量积与实数乘向量的积有什么区别?
(1)两个向量的数量积是一个实数,不是向量,符号由cos?的符号所决定.
(2)两个向量的数量积称为内积,写成a?b;今后要学到两个向量的外积a×b,而a?b是两个向量的数量的积,书写时要严格区分.符号"· "在向量运算中不是乘号,既不能省略,也不能用"×"代替.
(3)在实数中,若a?0,且a?b=0,则b=0;但是在数量积中,若a?0,且a?b=0,不能推出b=0.因为其中cos?有可能为0.
(4)已知实数a、b、c(b?0),则ab=bc ==> a=c.但是a?b = b?c a = c
如右图:a?b = |a||b|cos? = |b||OA|,b?c = |b||c|cos? = |b||OA|
==> a?b = b?c 但a ? c
标签:高二数学教案
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。