您当前所在位置:首页 > 高中 > 教案 > 高二数学教案

苏教版高二上学期数学教案范文:总体分布的估计

编辑:

2016-09-06

三、巩固练习: 1. 练习:作P61 3题数据的频率分布直方图.  2. 作业: P61  1题.

第二课时   2.2.1    用样本的频率分布估计总体频率分布 (二)

教学要求:通过实例体会分布的意义和作用,在表示样本数据的过程中,学会列频率分布表、画频率分布直方图、频率折线图、茎叶图,体会它们各自的特点.在解决统计问题的过程中,进一步体会用样本估计总体的思想,会用样本的频率分布估计总体分布,

教学重点:学会列频率分布表、画频率分布直方图、频率折线图、茎叶图.

教学难点:体会用样本估计总体的思想,会用样本的频率分布估计总体分布

教学过程:

一、复习准备:

1. 讨论:绘制频率分布直方图有哪几个步骤呢?

2. 练习:给出一个频率分布直方图,进行一些分析.

(如何表示频率?面积和?集中范围?变化趋势?)

二、讲授新课:

1、教学频率分布折线图及茎叶图:

① 定义频率分布折线图:画好频率分布图后,我们把频率分布直方图中各小长方形上端连接起来,得到的图形.

② 定义总体密度曲线:在样本频率分布直方图中,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线. 它能够精确地反映了总体在各个范围内取值的百分比,它能给我们提供更加精细的信息.

注:频率折线图是随着样本而变化的,因此并不能由频率折线图得到准确的总体密度曲线. 当样本容量不断增加,分组的组距不断缩小,频率分布折线图会越来越接近一条光滑的曲线即总体密度曲线,它由(a,b)的阴影部分的面积,直观反映总体在范围(a,b)内取值的百分比.

③ 讨论:对于任何一个总体,它的密度曲线是不是一定存在?它的密度曲线是否可以被非常准确地画出来?

(实际上,尽管有些总体密度曲线是客观存在的,但一般很难想函数图象那样准确地画出来,我们只能用样本的频率分布对它进行估计,一般来说,样本容量越大,这种估计就越精确.)

④ 提问:目前有哪些方式可以发现样本的规律?

(分布表、直方图、折线图都能帮助发现样本数据的规律)

⑤ 定义茎叶图: 当数据是两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出来的叶子,因此通常把这样的图叫做茎叶图.

注:茎叶是一种形象的说法,表明两部分数据间的关系,茎是指数据中用来分组的依据数,叶是指被分到这组的数.

⑥ 出示例:试将下列两组数据制作出茎叶图.

甲得分:13 ,51,23,8,26,38,16,33,14,25,39,

乙得分:49,24,12,31,60,31,44,36,15,37,25,36,39,

(▲ 师生共同按制作茎叶图的方法进行操作)

⑦ 讨论:用茎叶图处理样本数据有何好处,什么时候用茎叶图会比较方使?

(茎叶图不仅能够保留原始数据,数据可以随时记录,随时添加,方便记录, 而且能够展示数据的分布情况,但其仅适用于样本数据较少时,否则枝叶会太长. 茎叶图中数据的茎和叶的划分,可根据数据的特点灵活地决定.)

2、练习: 教材 P61第3题.

3、小结: 不易知一个总体的分布情况时,往往从总体中抽取一个样本,用样本的频率分布去估计总体的频率分布,样本容量越大,估计就越精确. 目前有:频率分布表、直方图、茎叶图.

三、巩固练习:

1. 练习:试制作本班男同学身高的茎叶图.   2. 作业:P72 1、2题,只作图

看完精品学习网给大家带来的高二上学期数学教案范文,相信老师对教学计划有了更深的认识。更多参考资料尽在精品学习网高中频道。

相关推荐:

湘教版高二上学期数学教案范文:空间的立法几何  

苏教版数学高二上册第一单元教案怎么写:算法案例 

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。