编辑:
2014-10-08
【例2】设f(x)=ax2+bx,且1≤f(-1) ≤2, 2≤f(1) ≤4 ,求f(-2)的取值范围
解:由已知1≤a-b≤2, ①, 2≤a+b≤4 ②
若将f(-2)=4a-2b用a-b与a+b,表示,则问题得解
设4a-2b=m(a-b)+n(a+b), (m,n为待定系数)
即4a-2b=(m+n)a-(m-n)b,
于是得 得:m=3, n=1
由①×3+②×1得5≤4a-2b≤10
即5≤f(-2)≤10,
另法:由 得
∴f(-2)=4a-2b=3 f(-1)+ f(1)……
◆特别提醒:常见错解:由①②解出a和b的范围,再凑出4a-2b的范围.错误的原因是a和b不同时接近端点值,可借且于线性规划知识解释.
【例3】(1)设A=xn+x-n,B=xn-1+x1-n,当x∈R+,n∈N时, 比较A与B的大小.
(2)设00且a≠ ,试比较|log3a(1-x)3|与|log3a(1+x)3|的大小.
解: (1)A-B=(xn+x-n)-(xn-1+x1-n)
=x-n(x2n+1-x2n-1-x)
=x-n[x(x2n-1-1)-(x2n-1-1)]
=x-n(x-1)(x2n-1-1).
由x∈R+,x-n>0,得
当x≥1时,x-1≥0,x2n-1-1≥0;
当x<1时,x-1<0,x2n-1<0,即
x-1与x2n-1-1同号.∴A-B≥0.∴A≥B.
(2)∵0
①当3a>1,即a> 时,
|log3a(1-x)3|-|log3a(1+x)3|
=|3log3a(1-x)|-|3log3a(1+x)|
=3[-log3a(1-x)-log3a(1+x)]
=-3log3a(1-x2).
∵0<1-x2<1,∴-3log3a(1-x2)>0.
②当0<3a<1,即0
|log3a(1-x)3|-|log3a(1+x)3|
=3[log3a(1-x)+log3a(1+x)]
=3log3a(1-x2)>0.
综上所述,|log3a(1-x)3|>|log3a(1+x)3|.
◆提炼方法:(1)作差分解因式、配方或利用单调性,分类判断差式的符号.
高三数学教案就分享到这里了,希望广大师生喜欢本文,点击查看更多高三数学教案!
标签:高三数学教案
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。