您当前所在位置:首页 > 高中 > 教案 > 高三数学教案

高三数学教案设计案例:数列的前n项和

编辑:

2014-10-08

(2)∵bn=nan,∴bn=n3n.

∴Sn=3+2×32+3×33+…+n 3n, ③

∴3Sn=32+2×33+3×34+…+n 3n+1. ④

④-③得2Sn=n 3n+1-(3+32+33+…+3n),

即2Sn=n 3n+1-3(1-3n)1-3, ∴Sn=(2n-1)3n+14+34.

小结与拓展:

题型2 并项求和法

例2 求 =1002-992+982-972+…+22-12

解: =1002-992+982-972+…+22-12=(100+ 99)+(98+97)+…+(2+1)=5050.

变式训练2 数列{(-1)n•n}的前2010项的和S2 010为( D )

A.-2010 B.-1005 C.2010 D.1005

解:S2 010=-1+2-3+4-5+…+2 008-2 009+2 010

=(2-1)+(4-3)+(6-5)+…+(2 010-2 009)=1 005.

小结与拓展:

题型3 累加(乘)法及其它方法:归纳、猜想、证明;周期数列的求和等等

例3 (1)求 之和.

(2)已知各项均为正数的数列{an}的前n项的乘积等于Tn= (n∈N*),

,则数列{bn}的前n项和Sn中最大的一项是( D )

A.S6 B.S5 C.S4 D.S3

解:(1)由于 (找通项及特征)

∴ = (分组求和)= =

=

(2)D.

变式训练3 (1)(2009福州八中)已知数列 则 , 。答案:100. 5000。

(2)数列 中, ,且 ,则前2010项的和等于( A )

A.1005 B.2010 C.1 D.0

小结与拓展:

四、归纳与总结(以学生为主,师生共同完成)

以上一个8种方法虽然各有其特点,但总的原则是要善于改变原数列的形式结构,使

其能进行消项处理或能使用等差数列或等比数列的求和公式以及其它已知的基本求和公式来解决,只要很好地把握这一规律,就能使数列求和化难为易,迎刃而解。

高三数学教案就分享到这里了,希望广大师生喜欢本文,点击查看更多高三数学教案

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。