编辑:
2016-09-01
应用示例
例1如图,在△ABC中,已知a=5,b=4,∠C=120°,求c.
活动:本例是利用余弦定理解决的第二类问题,可让学生独立完成.
解:由余弦定理,得
c2=a2+b2-2abcos120°,
因此c=52+42-2×5×4×-12=61.
例2如图,在△ABC中,已知a=3,b=2,c=19,求此三角形各个角的大小及其面积.(精确到0.1)
活动:本例中已知三角形三边,可利用余弦定理先求出最大边所对的角,然后利用正弦定理再求出另一角,进而求得第三角.教材中 这样安排是为了让学生充分熟悉正弦定理和余弦定理.实际教学时可让学生自己探求解题思路,比如学生可能会三次利用余弦定理分别求出三个角,或先求出最小边所对的角再用正弦定理求其他角,这些教师都要给予鼓励,然后让学生自己比较这些方法的不同或优劣,从而深刻理解两个定理的内涵.
解:由余弦定理,得
cos∠BCA=a2+b2-c22ab=32+22-1922×3×2=9+4-1912=-12,
因此∠BCA=120°,
再由正弦定理,得
sinA=asin∠BCAc=3×3219=33219≈0.596 0,
因此∠A≈36.6°或∠A≈143.4°(不合题意,舍去).
因此∠B=180°-∠A-∠BCA≈23.4°.
设BC边上的高为AD,则
AD=csinB=19sin23.4°≈1.73.
所以△ABC的面积≈12×3×1.73≈2.6.
点评:在既可应用正弦定理又可应用余弦定理时,体会两种方法存在的差异.当所求的 角是钝角时,用余弦定理可以立即判定所求的角,但用正弦定理则不能直接判定.
变式训练
在△ABC中,已知a=14,b=20,c=12,求A、B和C.(精确到1°)
解:∵cosA=b2+c2-a22bc=202+122-1422×20×12=0.725 0,
∴A≈44°.
∵cosC=a2+b2-c22ab=142+202-1222×14×20=113140≈0.807 1,
∴C≈36°.
∴B=180°-(A+C)≈180°-(44°+36°)=100°.
例3如图,△ABC的顶点为A(6,5),B(-2,8)和C(4,1),求∠A.(精确到0.1°)
活动:本例中三角形的三点是以坐标的形式给出的,点拨学生利用两点间距离公式先求出三边,然后利用余弦定理求出∠A.可由学生自己解决,教师给予适当的指导.
解:根据两点间距离公式,得
AB=[6--2]2+5-82=73,
BC=-2-42+8-12=85,
AC=6-42+5-12=25.
在△ABC中,由余弦定理,得
cosA=AB2+AC2-BC22AB•AC=2365≈0.104 7,
因此∠A≈84.0°.
点评:三角形三边的长作为中间过程,不必算出精确数值.
上文所提供的高三数学余弦定理教案设计,大家看了之后是不是感觉很受用呢?希望大家对本网及时关注。
精品学习网官方公众平台--【精品高中生】正式上线啦,大家可扫描下方的二维码关注,也可搜索微信号“gk51edu”或者直接输入“精品高中生”进行关注!!我们每天会为大家推送最新的内容哦~
标签:高三数学教案
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。