编辑:sx_songj
2014-06-23
摘要:明确教学目的、任务,体现教学内容的重点、难点,这都是一个优秀的教学设计应该做到的。精品学习网为大家提供了高二物理教案:磁场教案,希望大家喜欢。
要点一 通电导线在磁场中的运动及受力
1.直线电流元分析法:把整段电流分成很多小段直线电流,其中每一小段就是一个电流元,先用左手定则判断出每小段电流元受到的安培力的方向,再判断整段电流所受安培力的方向,从而确定导体的运动方向.
2.特殊位置分析法,根据通电导体在特殊位置所受安培力方向,判断其运动方向,然后推广到一般位置.
3.等效分析法:环形电流可等效为小磁针,条形磁铁或小磁针也可等效为环形电流,通电螺线管可等效为多个环形电流或条形磁铁.
4.利用结论法:(1)两电流相互平行时,无转动趋势;电流同向导线相互吸引,电流反向导线相互排斥;(2)两电流不平行时,导线有转动到相互平行且电流同向的趋势.
要点二 带电粒子在有界磁场中的运动
有界匀强磁场指在局部空间存在着匀强磁场,带电粒子从磁场区域外垂直磁场方向射入磁场区域,在磁场区域内经历一段匀速圆周运动,也就是通过一段圆弧后离开磁场区域.由于运动的带电粒子垂直磁场方向,从磁场边界进入磁场的方向不同,或磁场区域边界不同,造成它在磁场中运动的圆弧轨道各不相同.如下面几种常见情景:
图3-1
解决这一类问题时,找到粒子在磁场中一段圆弧运动对应的圆心位置、半径大小以及与半径相关的几何关系是解题的关键.
1.三个(圆心、半径、时间)关键确定
研究带电粒子在匀强磁场中做圆周运动时,常考虑的几个问题:
(1)圆心的确定
已知带电粒子在圆周中两点的速度方向时(一般是射入点和射出点),沿洛伦兹力方向画出两条速度的垂线,这两条垂线相交于一点,该点即为圆心.(弦的垂直平分线过圆心也常用到)
(2)半径的确定
一般应用几何知识来确定.
(3)运动时间:t=θ360°T=φ2πT(θ、φ为圆周运动的圆心角),另外也可用弧长Δl与速率的比值来表示,即t=Δl/v.
图3-2
(4)粒子在磁场中运动的角度关系:
粒子的速度偏向角(φ)等于圆心角(α),并等于AB弦与切线的夹角(弦切角θ)的2倍,即φ=α=2θ=ωt;相对的弦切角(θ)相等,与相邻的弦切角(θ′)互补,即θ′+θ=180°.如图3-2所示.
2.两类典型问题
(1)极值问题:常借助半径R和速度v(或磁场B)之间的约束关系进行动态运动轨迹分析,确定轨迹圆和边界的关系,找出临界点,然后利用数学方法求解极值.
注意 ①刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切.
②当速度v一定时,弧长(或弦长)越长,圆周角越大,则带电粒子在有界磁场中运动的时间越长.
③当速率v变化时,圆周角大的,运动时间长.
(2)多解问题:多解形成的原因一般包含以下几个方面:
①粒子电性不确定;②磁场方向不确定;③临界状态不唯一;④粒子运动的往复性等.
关键点:①审题要细心.②重视粒子运动的情景分析.
要点三 带电粒子在复合场中的运动
复合场是指电场、磁场和重力场并存,或其中某两场并存,或分区域存在的某一空间.粒子经过该空间时可能受到的力有重力、静电力和洛伦兹力.处理带电粒子(带电体)在复合场中运动问题的方法:
1.正确分析带电粒子(带电体)的受力特征.带电粒子(带电体)在复合场中做什么运动,取决于带电粒子(带电体)所受的合外力及其初始速度.带电粒子(带电体)在磁场中所受的洛伦兹力还会随速度的变化而变化,而洛伦兹力的变化可能会引起带电粒子(带电体)所受的其他力的变化,因此应把带电粒子(带电体)的运动情况和受力情况结合起来分析,注意分析带电粒子(带电体)的受力和运动的相互关系,通过正确的受力分析和运动情况分析,明确带电粒子(带电体)的运动过程和运动性质,选择恰当的运动规律解决问题.
2.灵活选用力学规律
(1)当带电粒子(带电体)在复合场中做匀速运动时,就根据平衡条件列方程求解.
(2)当带电粒子(带电体)在复合场中做匀速圆周运动时,往往同时应用牛顿第二定律和平衡条件列方程求解.
(3)当带电粒子(带电体)在复合场中做非匀变速曲线运动时,常选用动能定理或能量守恒定律列方程求解.
(4)由于带电粒子(带电体)在复合场中受力情况复杂,运动情况多变,往往出现临界问题,这时应以题目中的“恰好”、“最大”、“最高”、“至少”等词语为突破口,挖掘隐含条件,根据隐含条件列出辅助方程,再与其他方程联立求解.
标签:高二物理教案
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。