您当前所在位置:首页 > 高中 > 教学计划 > 高一数学教学计划

苏教版必修一高一数学教学计划模板:函数与方程

编辑:

2016-09-05

(二)、概念形成:

预习展示1:

你能通过观察二次方程的根及相应的二次函数图象,找出方程的根,图象与轴交点的坐标以及函数零点的关系吗?(用屏幕显示函数

的图象)

学生活动:观察图像,思考作答。

教师活动:我们来认真地对比一下。用投影展示学生填写表格

一元二次方程

方程的根

二次函数

函数的图象

(简图)

图象与

轴交点的坐标

函数的

问题1:你能通过观察二次方程的根及相应的二次函数图象,找出方程的根,图象与

轴交点的坐标以及函数零点的关系吗?

学生活动:得到方程的实数根应该是函数图象与x轴交点的横坐标的结论。

教师活动:我们就把使方程 成立的实数x称做函数的零点.(引出零点的概念)

根据零点概念,提出问题,零点是点吗?零点与函数方程的根有何关系?

学生活动:经过观察表格,得出(请学生总结)

1)概念:函数的零点并不是“点”,它不是以坐标的形式出现,而是实数。例如函数的零点为x=-1,3

2)函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标.

3)方程有实数根函数的图象与轴有交点函数有零点。

教师活动:引导学生仔细体会上述结论。

再提出问题:如何并根据函数零点的意义求零点?

学生活动:可以解方程而得到(代数法);

可以利用函数的图象找出零点.(几何法).

设计意图:由学生最熟悉的二次方程和二次函数出发,发现一般规律,并尝试的去总结零点,根与交点三者的关系。

关于上文提供的高一数学教学计划模板,大家仔细阅读了吗?更多资料请及时关注精品学习网。

相关推荐:

沪教版高一数学集合之间的关系教学计划范文:上册

沪教版高一数学集合及其表示法教学计划范文:上册 

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。