您当前所在位置:首页 > 高中 > 教学计划 > 高一数学教学计划

沪教版高一数学一元二次不等式的解法教学计划范文:第二单元

编辑:

2016-09-05

现在请同学们观察表中的二次函数图,并写出相应一元二次不等式的解集。(通过多媒体或其他载体给出以下表格)

【答】

的解集依次是

的解集依次是

它是我们今后求解一元二次不等式的主要工具。应尽快将表中的结果记住。其关键就是抓住相应二次函数

的图像。

课本第19页上的例1.例2.例3.它们均是求解二次项系数

的一元二次不等式,却都没有给出相应二次函数的图像。其解答过程虽很简练,却不太直观。现在我们在课本预留的位置上分别给它们补上相应二次函数图像。

(教师巡视,重点关注程度稍差的同学。)

Ⅲ.演练反馈

1.解下列不等式:

(1)

(2)

(3)

(4)

2.若代数式

的值恒取非负实数,则实数x的取值范围是            。

3.解不等式

(1)

(2)

参考答案

1.(1)

;(2)

;(3)

;(4)R

2.

3.(1)

(2)当

时,

,当

时,

时,

Ⅳ.总结提炼

这节课我们学习了二次项系数

的一元二次不等式的解法,其关键是抓住相应二次函数的图像与x轴的交点,再对照课本第39页上表格中的结论给出所求一元二次不等式的解集。

(五)、课时作业

(P20.练习等3、4两题)

(六)、板书设计

二课时

Ⅰ.设置情境

(通过讲评上一节课课后作业中出现的问题,复习利用“三个二次”间的关系求解一元二次不等式的主要操作过程。)

上节课我们只讨论了二次项系数

的一元二次不等式的求解问题。肯定有同学会问,那么二次项系数

的一元二次不等式如何来求解?咱们班上有谁能解答这个疑问呢?

Ⅱ.探索研究

(学生议论纷纷.有的说仍然利用二次函数的图像,有的说将二次项的系数变为正数后再求解,…….教师分别请持上述见解的学生代表进一步说明各自的见解.)

生甲:只要将课本第39页上表中的二次函数图像次依关于x轴翻转变成开口向下的抛物线,再根据可得的图像便可求得二次项系数

的一元二次不等式的解集.

生乙:我觉得先在不等式两边同乘以-1将二次项系数变为正数后直接运用上节课所学的方法求解就可以了.

师:首先,这两种见解都是合乎逻辑和可行的.不过按前一见解来操作的话,同学们则需再记住一张类似于第39页上的表格中的各结论.这不但加重了记忆负担,而且两表中的结论容易搞混导致错误.而按后一种见解来操作时则不存在这个问题,请同学们阅读第19页例4.

(待学生阅读完毕,教师再简要讲解一遍.)

[知识运用与解题研究]

由此例可知,对于二次项系数的一元二次不等式是将其通过同解变形化为

的一元二次不等式来求解的,因此只要掌握了上一节课所学过的方法。我们就能求

解任意一个一元二次不等式了,请同学们求解以下两不等式.(调两位程度中等的学生演板)

(1)

(2)

(分别为课本P21习题1.5中1大题(2)、(4)两小题.教师讲评两位同学的解答,注意纠正表述方面存在的问题.)

训练二  可化为一元一次不等式组来求解的不等式.

目前我们熟悉了利用“三个二次”间的关系求解一元二次不等式的方法虽然对任意一元二次不等式都适用,但具体操作起来还是让我们感到有点麻烦.故在求解形如

(或

)的一元二次不等式时则根据(有理数)乘(除)运算的“符号法则”化为同学们更加熟悉的一元一次不等式组来求解.现在清同学们阅读课本P20上关于不等式

求解的内容并思考:原不等式的解集为什么是两个一次不等式组解集的并集?(待学生阅读完毕,请一程度较好,表达能力较强的学生回答该问题.)

【答】因为满足不等式组

的x都能使原不等式

成立,且反过来也是对的,故原不等式的解集是两个一元二次不等式组解集的并集.

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。