您当前所在位置:首页 > 高中 > 教学计划 > 高一数学教学计划

高一上学期数学教学计划格式:幂函数

编辑:

2016-09-14

由具体问题入手,从熟悉的情景引入,提高学生的参与程度。符合学生认识特点。

⑵上述函数解析式有什么共同特征?是否为指数函数? 学生相互讨论,必要时,教师将解析式写成指数幂形式,以启发学生归纳。投影演示定义。 引导学生观察,训练学生归纳能力。并与前面知识进行区分,以进一步帮助学生明晰概念。

⑶判别下列函数中有几个幂函数?

①y= ②y=2x2③y=x ④y=x2+x ⑤y=-x3

学生独立思考,回答。学生鉴别。幻灯片演示题目。

巩固概念,强化学生对概念形式特征的把握。

⑷幂函数具有哪些性质?研究函数应该是哪些方面的内容。前面指数函数、对数函数研究了哪些内容?

学生讨论,教师引导。学生回答。

引导学生回想前面学习指数函数与对数函数的研究内容和过程。启发学生用类比思想进行研究幂函数。

⑸幂函数的定义域是否与对数函数、指数函数一样,具有相同的定义域? 学生小组讨论,得到结论。引导学生举例研究。结论:幂指数 不同,定义域并不完全相同,应区别对待。

激发学生探讨的欲望,提高学生主动参与程度。

⑹写出下列函数的定义域,并指出它们的奇偶性:①y=x ②y= ③y=x ④y=x

学生解答,并归纳解决办法。引导学生与指数函数、对数函数对照比较。(幻灯片演示) 引导学生具体问题具体分析,并作简单归纳:分数指数应化成根式,负指数写成正数指数再写出定义域。幂函数的奇偶性也应具体分析。

⑺上述函数的单调性如何?如何判断?

学生思考:作图 引发学生作图研究函数性质的兴趣。函数单调性的判断,既可以使用定义,也可以通过图象解决,直观,易理解。

⑻在同一坐标系内作出上述函数的图象。 学生作图,教师巡视。将学生作图用实物投影仪演示,指出优点和错误之处。教师利用几何画板演示(附图1)通过超级链接几何画板演示。 训练学生作图的基本功,加强学生的实践,让学生在自己的经验中认识幂函数的图象。避免教师直接使用计算机演示图象,剥夺学生动手的机会。

⑼上述函数图象有哪些共同点? 学生讨论,总结。教师引导。可将学生已熟悉的函数y= ,y=x一同投影,帮助学生观察。(投影演示结论)

训练学生观察分析能力。

⑽回答第7个问题。

学生思考,回答。教师注意学生叙述的严密。 训练学生的语言叙述能力。再次体会与指数函数、对数函数性质的区别。体会幂指数的不同情况对函数单调性的影响。

⑾图象之间有什么区别?特别是在分布上。与常数 有什么联系?

教师通过几何画板演示图象在第一象限内的变化规律,以验证学生猜想。通过超级链接几何画板演示。(附图2)

这是较高要求,可以让学生自由猜想和发言。进一步提高学生观察,归纳能力。

⑿巩固练习 写出下列函数的定义域,并指出它们的奇偶性和单调性:①y=x ②y=x ③y=x 。

学生独立思考并回答。

训练学生自觉运用幂函数图象性质的基本规律。

⒀简单应用1:比较下列各组中两个值的大小,并说明理由:

①0.75 ,0.76 ;

②(-0.95) ,(-0.96) ;

③0.23 ,0.24 ;

④0.31 ,0.31

学生思考,作答,教师引导学生叙述语言的逻辑性。

训练学生用函数性质进行解释,强化学生逻辑意识。其中第④小题是利用指数函数性质解决,注意区别。

⒁请学生考虑可以如何验证上述答案的正确。

学生实践。 使用计算器验证,提高学生使用学习工具的意识。

⒂简单应用2:幂函数y=(m -3m-3)x 在区间 上是减函数,求m的值。

学生思考,作答。教师板演。 对幂函数定义进一步巩固,对函数性质作初步应用。同时训练学生对初步答案进行筛选。

⒃简单应用2:

已知(a+1) <(3-2a) ,试求a的取值范围。

学生思考,作答。教师板演。

训练学生灵活使用性质解题。

数学交流 ⒄小结:今天的学习内容和方法有哪些?你有哪些收获和经验? 学生思考、小组讨论,教师引导。 让学生回顾,小结,将对学生形成知识系统产生积极影响。

数学再现

⒅布置作业:

课本p.73 2、3、4、思考5 思考5作为训练学生应用数学于实际的较好例子,应让能力较好学生得到充分发展。

几点说明:

⑴本节课开始时要注意用相关熟悉例子引入新课。

⑵画函数图象时,如果学生已能够运用计算器或相关计算机软件作图,可以让学生自己操作,以提高学生探索问题的兴趣和能力,并提高教学效率。

⑶由于课程标准对幂函数的研究范围有相对限制,故第11个问题要求较高,建议视具体情况选择教学。

⑷本设计相关课件采用PowerPoint演示文稿,其中部分使用超级链接至几何画板(4.06版本)进行演示。

高中是人生中的关键阶段,大家一定要好好把握高中,编辑老师为大家整理的高一上学期数学教学计划格式,希望大家喜欢。

相关推荐:

人教版高一数学对数函数教学计划范文

人教版高一数学指数函数教学计划范文参考

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。