编辑:
2016-09-05
针对于上述数据所提供的信息,你认为人体的脂肪含量与年龄之间有怎样的关系?教师特别向学生 强调在研究两个变量之间是否存在某种关系时,必须从散点图入手(向学生介绍什么是散点图)。并且引导学生从散点图上可以得出如下规律:
1、如果所有的样本点都落在某一函数曲线上,那么变量之间具有函数关系(确定性关系);
2、如果所有的样本点都落在某一函数曲线的附近,那么变量之间具有相关关系(不确定性关系);
3、如果所有的样本点都落在某一直线附近,那么变量之间具有线性相关关系(不确定性关系)。
引导学生观察作出的散点图,体会现实生活中两个变量之间的关系存在着不确定性。散点图中的散点并不在一条直线上,只是分布在一条直线的周围,即为线性相关关系。
注:“回归”这个词是有英国著名的统计学家 Francils Galton 提出来的。1889年,他在研究祖先与后代身高之间的关系时发现,身材较高的父母,他们的孩子也较高,但这些孩子的平均身高并没有他们的父母平均身高高;身材较矮的父母,他们的孩子也较矮,但这些孩子的平均身高却比他们的父母平均身高高。Galton 把这种后代的身高向中间值靠近的趋势称为“回归现象”。后来,人们把由一个变量的变化去推测另一个变量的变化的方法称为“回归方法”。
那么如何求回归直线方程呢?人们在思考这个问题的时候,常用以下3种方法:
1、采用测量的方法,先画一条直线,测量出各点到它的距离,然后移动直线,到达一个使距离之和最小的位置,测量出此时直线的斜率和截距,就得到回归方程。
2、在图中选取两点画直线,使得直线两侧的点的个数基本相同。
3、在散点图中多取几个点,确定几条直线的方程,分别求出各条直线的斜率和截距的平均数,将这两个平均数作为回归方程的斜率和截距。
上面的这些方法虽然有一定的道理,但总让人感觉到可靠性不强。统计学中,科学家们经过研究后于是得出了如下方法:求回归方程的关键是如何用数学的方法来刻画“从整体上看各点与此直线的距离和最小”。现在,我们来看一下数学家解决这个问题的思维过程吧。
设已经得到具有线性相关关系的一组数据: ,所要求的回归直线方程为: ,其中, 是待定的系数。当变量 取 时,可以得到 。求 的最小值,其步骤为:
四、相关系数及其含义
从图象和回归方程可知:人的脂肪含量与人的年龄是正相关关系,那么人的年龄多大程度上决定人体的脂肪含量?这就是相关强弱的问题。如何解决这一问题,统计学家们引进相关系数这一概念,用相关系数 来衡量两个变量之间的线性关系的强弱。若相应于变量 的取值 ,变量 的观测值为 ,
则两个变量的相关系数的计算公式为:
相关关系的强弱给出具体的判断标准:首先 的符号决定正、负相关关系;当 时,相关关系很强;当 时,相关关系一般;此外,相关关系很弱或者几乎不能用线性相关来描述。通过计算,我们得到探究问题中的 ,所以我们说人的脂肪含量与人的年龄正相关关系很强。
最后,我们得到问题的主要结论:
1、 人体的脂肪与年龄之间是线性相关关系,而且正相关关系很强( )。
2、这种相关关系可以用回归方程: 来刻画。
3、人在62、63、64岁时,人体的脂肪含量百分比大约为:35.26、35.84、36.42。
六、求直线回归方程,相关系数和作图,这些EXCEL 可以方便地做到。仍以上题的数据为例。于 EXCEL表 中的空白区,选用"插入"菜单命令中的"图表",选中 XY散 点图类型,在弹出的图表向导中按向导的要求一步一步地 操作,如有错误可以返回去重来或在以后修改。适当修饰 图的大小、纵横比例、字体大小、和图符的大小等,使图 美观,最后得到图1,图中有直线称为趋势线,还有直线方程和相关系数。图中的每一个部份如坐标、标题、图例 等都可以分别修饰,这里主要介绍趋势线和直线方程。
图1散点图
鼠标右键点击图中的数据点,出现一个对话框,选 " 添加趋势线" ,图中自动画上一条直线,再以鼠标右击此线,出现趋势线格 式对话框,选择线条的粗细和颜色,在选项中选取显示公式和显示R 平方值,确定后即在 图中显示回归方程和相关系数。
小结:经历用不同估算方法描述两个变量线性相关的过程。知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程。
上文为大家编辑的高二数学教学计划模板,大家还满意吗?祝大家生活愉快。
相关推荐:
标签:高二数学教学计划
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。